BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20842880)

  • 21. Antimicrobial β-peptides and α-peptoids.
    Godballe T; Nilsson LL; Petersen PD; Jenssen H
    Chem Biol Drug Des; 2011 Feb; 77(2):107-16. PubMed ID: 21266014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial polymers: mechanism of action, factors of activity, and applications.
    Timofeeva L; Kleshcheva N
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):475-92. PubMed ID: 20953604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.
    Lienkamp K; Madkour AE; Musante A; Nelson CF; Nüsslein K; Tew GN
    J Am Chem Soc; 2008 Jul; 130(30):9836-43. PubMed ID: 18593128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes.
    Yang X; Hu K; Hu G; Shi D; Jiang Y; Hui L; Zhu R; Xie Y; Yang L
    Biomacromolecules; 2014 Sep; 15(9):3267-77. PubMed ID: 25068991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin.
    Zhu S; Aumelas A; Gao B
    J Med Chem; 2011 Feb; 54(4):1091-5. PubMed ID: 21222457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation.
    Lienkamp K; Madkour AE; Kumar KN; Nüsslein K; Tew GN
    Chemistry; 2009 Nov; 15(43):11715-22. PubMed ID: 19798715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion.
    Ishitsuka Y; Arnt L; Majewski J; Frey S; Ratajczek M; Kjaer K; Tew GN; Lee KY
    J Am Chem Soc; 2006 Oct; 128(40):13123-9. PubMed ID: 17017792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp.
    Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ
    Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial, hemolytic, and cytotoxic activities of beta-peptoid-peptide hybrid oligomers: improved properties compared to natural AMPs.
    Olsen CA; Ziegler HL; Nielsen HM; Frimodt-Møller N; Jaroszewski JW; Franzyk H
    Chembiochem; 2010 Jul; 11(10):1356-60. PubMed ID: 20503219
    [No Abstract]   [Full Text] [Related]  

  • 30. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.
    Conlon JM; Al-Ghaferi N; Abraham B; Leprince J
    Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships.
    Ergene C; Palermo EF
    Curr Pharm Des; 2018; 24(8):855-865. PubMed ID: 29436992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.
    Uppu DS; Haldar J
    Biomacromolecules; 2016 Mar; 17(3):862-73. PubMed ID: 26839947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo generation of short antimicrobial peptides with simple amino acid composition.
    Lee SH; Kim SJ; Lee YS; Song MD; Kim IH; Won HS
    Regul Pept; 2011 Jan; 166(1-3):36-41. PubMed ID: 20736034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in antimicrobial peptide immunobiology.
    Yount NY; Bayer AS; Xiong YQ; Yeaman MR
    Biopolymers; 2006; 84(5):435-58. PubMed ID: 16736494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence requirements and an optimization strategy for short antimicrobial peptides.
    Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE
    Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size exclusion chromatography--a blessing and a curse of science and technology of synthetic polymers.
    Berek D
    J Sep Sci; 2010 Feb; 33(3):315-35. PubMed ID: 20127919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.
    Hancock RE; Sahl HG
    Nat Biotechnol; 2006 Dec; 24(12):1551-7. PubMed ID: 17160061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM.
    Qian L; Xiao H; Zhao G; He B
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1895-901. PubMed ID: 21488703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amphiphilic polymethacrylate derivatives as antimicrobial agents.
    Kuroda K; DeGrado WF
    J Am Chem Soc; 2005 Mar; 127(12):4128-9. PubMed ID: 15783168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New antimicrobial hexapeptides: synthesis, antimicrobial activities, cytotoxicity, and mechanistic studies.
    Sharma RK; Sundriyal S; Wangoo N; Tegge W; Jain R
    ChemMedChem; 2010 Jan; 5(1):86-95. PubMed ID: 19943276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.