BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20842880)

  • 41. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.
    Azmi F; Skwarczynski M; Toth I
    Curr Med Chem; 2016; 23(41):4610-4624. PubMed ID: 27570165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multivalent antimicrobial peptides from a reactive polymer scaffold.
    Liu Z; Deshazer H; Rice AJ; Chen K; Zhou C; Kallenbach NR
    J Med Chem; 2006 Jun; 49(12):3436-9. PubMed ID: 16759083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and Bioactivity of Polymer-Based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) Made from Asymmetrically Disubstituted Itaconates.
    Boschert D; Schneider-Chaabane A; Himmelsbach A; Eickenscheidt A; Lienkamp K
    Chemistry; 2018 Jun; 24(32):8217-8227. PubMed ID: 29600579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural identification by mass spectrometry of a novel antimicrobial peptide from the venom of the solitary bee Osmia rufa (Hymenoptera: Megachilidae).
    Stöcklin R; Favreau P; Thai R; Pflugfelder J; Bulet P; Mebs D
    Toxicon; 2010 Jan; 55(1):20-7. PubMed ID: 19109988
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A general concept for the preparation of hierarchically structured pi-conjugated polymers.
    Frauenrath H; Jahnke E
    Chemistry; 2008; 14(10):2942-55. PubMed ID: 18228550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Block copolymers in tomorrow's plastics.
    Ruzette AV; Leibler L
    Nat Mater; 2005 Jan; 4(1):19-31. PubMed ID: 15689991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties.
    Bruschi M; Pirri G; Giuliani A; Nicoletto SF; Baster I; Scorciapino MA; Casu M; Rinaldi AC
    Peptides; 2010 Aug; 31(8):1459-67. PubMed ID: 20438783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich alpha-helical model antimicrobial peptide and its diastereomeric peptides.
    Wang P; Nan YH; Yang ST; Kang SW; Kim Y; Park IS; Hahm KS; Shin SY
    Peptides; 2010 Jul; 31(7):1251-61. PubMed ID: 20363271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo designed synthetic mimics of antimicrobial peptides.
    Scott RW; DeGrado WF; Tew GN
    Curr Opin Biotechnol; 2008 Dec; 19(6):620-7. PubMed ID: 18996193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-beta strand cystine knot framework.
    Tam JP; Lu YA; Yang JL
    Biochem Biophys Res Commun; 2000 Jan; 267(3):783-90. PubMed ID: 10673369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformationally rigid proteomimetics: a case study in designing antimicrobial aryl oligomers.
    Gabriel GJ; Tew GN
    Org Biomol Chem; 2008 Feb; 6(3):417-23. PubMed ID: 18219405
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimizing antimicrobial host defense peptides.
    Sahl HG
    Chem Biol; 2006 Oct; 13(10):1015-7. PubMed ID: 17052605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reversed sequence enhances antimicrobial activity of a synthetic peptide.
    Gopal R; Kim YJ; Seo CH; Hahm KS; Park Y
    J Pept Sci; 2011 May; 17(5):329-34. PubMed ID: 21462284
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry.
    Gabriel GJ; Pool JG; Som A; Dabkowski JM; Coughlin EB; Muthukumar M; Tew GN
    Langmuir; 2008 Nov; 24(21):12489-95. PubMed ID: 18841926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.
    Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW
    Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antibacterial peptides for therapeutic use: obstacles and realistic outlook.
    Marr AK; Gooderham WJ; Hancock RE
    Curr Opin Pharmacol; 2006 Oct; 6(5):468-72. PubMed ID: 16890021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption.
    Pal S; Mitra K; Azmi S; Ghosh JK; Chakraborty TK
    Org Biomol Chem; 2011 Jul; 9(13):4806-10. PubMed ID: 21590000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides.
    Bhattacharjya S; Ramamoorthy A
    FEBS J; 2009 Nov; 276(22):6465-73. PubMed ID: 19817858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use.
    Brouwer CP; Rahman M; Welling MM
    Peptides; 2011 Sep; 32(9):1953-63. PubMed ID: 21827807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.