BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20842953)

  • 1. [Pharmacogenomics and chemotherapy].
    Paris I; Cappellini GC; Malaguti P; Bassanelli M; Marchetti P
    Recenti Prog Med; 2010; 101(7-8):277-82. PubMed ID: 20842953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacogenetic testing to predict serious toxicity from 5-fluorouracil (5-FU) for patients administered 5-FU-based chemotherapy for cancer.
    Technol Eval Cent Assess Program Exec Summ; 2010 Aug; 24(13):1-3. PubMed ID: 21114065
    [No Abstract]   [Full Text] [Related]  

  • 3. Cancer pharmacogenomics: current and future applications.
    Watters JW; McLeod HL
    Biochim Biophys Acta; 2003 Mar; 1603(2):99-111. PubMed ID: 12618310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics.
    Mattison LK; Soong R; Diasio RB
    Pharmacogenomics; 2002 Jul; 3(4):485-92. PubMed ID: 12164772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pharmacogenetic studies on the prediction of efficacy and toxicity of fluoropyrimidine-based adjuvant therapy in colorectal cancer].
    Kralovánszky J; Adleff V; Hitre E; Pap E; Réti A; Komlósi V; Budai B
    Magy Onkol; 2007; 51(2):113-25. PubMed ID: 17660867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphisms in the thymidylate synthase and dihydropyrimidine dehydrogenase genes predict response and toxicity to capecitabine-raltitrexed in colorectal cancer.
    Salgado J; Zabalegui N; Gil C; Monreal I; Rodríguez J; García-Foncillas J
    Oncol Rep; 2007 Feb; 17(2):325-8. PubMed ID: 17203168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydropyrimidine dehydrogenase and thymidylate synthase polymorphisms and their association with 5-fluorouracil/leucovorin chemotherapy in colorectal cancer.
    Zhu AX; Puchalski TA; Stanton VP; Ryan DP; Clark JW; Nesbitt S; Charlat O; Kelly P; Kreconus E; Chabner BA; Supko JG
    Clin Colorectal Cancer; 2004 Feb; 3(4):225-34. PubMed ID: 15025795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacogenomics panel test for prevention toxicity in patient who receive Fluoropirimidine/Oxaliplatin-based therapy.
    Di Francia R; Siesto RS; Valente D; Spart D; Berretta M
    Eur Rev Med Pharmacol Sci; 2012 Sep; 16(9):1211-7. PubMed ID: 23047504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of human dihydropyrimidine dehydrogenase: implications in the pharmacogenetics of 5-FU-based chemotherapy.
    Zhang X; Diasio RB
    Pharmacogenomics; 2007 Mar; 8(3):257-65. PubMed ID: 17324113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The biological point of view on pharmacogenetics of anticancer agents in colorectal cancer].
    Laurent-Puig P; Lièvre A; Ducreux M; Loriot MA
    Bull Cancer; 2008 Oct; 95(10):935-42. PubMed ID: 19004723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacogenetics of fluoropyrimidine and cisplatin. A future application to gastric cancer treatment.
    Shimoyama S
    J Gastroenterol Hepatol; 2009 Jun; 24(6):970-81. PubMed ID: 19638079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector targeting makes 5-fluorouracil chemotherapy less toxic and more effective in animal models of epithelial neoplasms.
    Akbulut H; Tang Y; Maynard J; Zhang L; Pizzorno G; Deisseroth A
    Clin Cancer Res; 2004 Nov; 10(22):7738-46. PubMed ID: 15570008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prognostic value of 5-fluorouracil metabolic enzyme genes in Dukes' stage B and C colorectal cancer patients treated with oral 5-fluorouracil-based adjuvant chemotherapy.
    Yamada H; Iinuma H; Watanabe T
    Oncol Rep; 2008 Mar; 19(3):729-35. PubMed ID: 18288408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Fluorouracil pharmacogenomics: still rocking after all these years?
    Scartozzi M; Maccaroni E; Giampieri R; Pistelli M; Bittoni A; Del Prete M; Berardi R; Cascinu S
    Pharmacogenomics; 2011 Feb; 12(2):251-65. PubMed ID: 21332317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent advance in chemotherapy for advanced colorectal cancer].
    Aiba K
    Gan To Kagaku Ryoho; 1996 Apr; 23(5):535-48. PubMed ID: 8678510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMET™ (Drug-Metabolizing Enzymes and Transporters) microarray analysis of colorectal cancer patients with severe 5-fluorouracil-induced toxicity.
    Rumiato E; Boldrin E; Amadori A; Saggioro D
    Cancer Chemother Pharmacol; 2013 Aug; 72(2):483-8. PubMed ID: 23760813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pharmacogenetics in capecitabine efficacy and toxicity.
    Lam SW; Guchelaar HJ; Boven E
    Cancer Treat Rev; 2016 Nov; 50():9-22. PubMed ID: 27569869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Germline TYMS genotype is highly predictive in patients with metastatic gastrointestinal malignancies receiving capecitabine-based chemotherapy.
    Joerger M; Huitema AD; Boot H; Cats A; Doodeman VD; Smits PH; Vainchtein L; Rosing H; Meijerman I; Zueger M; Meulendijks D; Cerny TD; Beijnen JH; Schellens JH
    Cancer Chemother Pharmacol; 2015 Apr; 75(4):763-72. PubMed ID: 25677447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pharmacogenetics in oncology: 5-fluorouracil and the dihydropyrimidine dehydrogenase].
    Lazar A; Jetter A
    Dtsch Med Wochenschr; 2008 Jul; 133(28-29):1501-4. PubMed ID: 18597209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil.
    van Kuilenburg AB
    Eur J Cancer; 2004 May; 40(7):939-50. PubMed ID: 15093568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.