These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20843005)

  • 1. Probing the folding intermediate of Bacillus subtilis RNase P protein by nuclear magnetic resonance.
    Chang YC; Franch WR; Oas TG
    Biochemistry; 2010 Nov; 49(44):9428-37. PubMed ID: 20843005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linked folding and anion binding of the Bacillus subtilis ribonuclease P protein.
    Henkels CH; Kurz JC; Fierke CA; Oas TG
    Biochemistry; 2001 Mar; 40(9):2777-89. PubMed ID: 11258888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligation-state hydrogen exchange: coupled binding and folding equilibria in ribonuclease P protein.
    Henkels CH; Oas TG
    J Am Chem Soc; 2006 Jun; 128(24):7772-81. PubMed ID: 16771491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic Energetics of Bacillus subtilis Ribonuclease P Protein Determined by Nuclear Magnetic Resonance-Based Histidine pKa Measurements.
    Mosley PL; Daniels KG; Oas TG
    Biochemistry; 2015 Sep; 54(35):5379-88. PubMed ID: 26267651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of backbone conformational heterogeneity in Bacillus subtilis ribonuclease P protein.
    Henkels CH; Chang YC; Chamberlin SI; Oas TG
    Biochemistry; 2007 Dec; 46(51):15062-75. PubMed ID: 18052200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic characterization of the osmolyte- and ligand-folded states of Bacillus subtilis ribonuclease P protein.
    Henkels CH; Oas TG
    Biochemistry; 2005 Oct; 44(39):13014-26. PubMed ID: 16185070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation.
    Getz MM; Andrews AJ; Fierke CA; Al-Hashimi HM
    RNA; 2007 Feb; 13(2):251-66. PubMed ID: 17194721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand concentration regulates the pathways of coupled protein folding and binding.
    Daniels KG; Tonthat NK; McClure DR; Chang YC; Liu X; Schumacher MA; Fierke CA; Schmidler SC; Oas TG
    J Am Chem Soc; 2014 Jan; 136(3):822-5. PubMed ID: 24364358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage.
    Niranjanakumari S; Day-Storms JJ; Ahmed M; Hsieh J; Zahler NH; Venters RA; Fierke CA
    RNA; 2007 Apr; 13(4):521-35. PubMed ID: 17299131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmolyte-induced folding of an intrinsically disordered protein: folding mechanism in the absence of ligand.
    Chang YC; Oas TG
    Biochemistry; 2010 Jun; 49(25):5086-96. PubMed ID: 20476778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended structures in RNA folding intermediates are due to nonnative interactions rather than electrostatic repulsion.
    Baird NJ; Gong H; Zaheer SS; Freed KF; Pan T; Sosnick TR
    J Mol Biol; 2010 Apr; 397(5):1298-306. PubMed ID: 20188108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding.
    Buevich AV; Baum J
    J Am Chem Soc; 2002 Jun; 124(24):7156-62. PubMed ID: 12059241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions.
    Vu ND; Feng H; Bai Y
    Biochemistry; 2004 Mar; 43(12):3346-56. PubMed ID: 15035606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway.
    Dyson HJ; Wright PE
    Acc Chem Res; 2017 Jan; 50(1):105-111. PubMed ID: 28032989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy.
    Brutscher B; Brüschweiler R; Ernst RR
    Biochemistry; 1997 Oct; 36(42):13043-53. PubMed ID: 9335566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of high-pressure nuclear magnetic resonance to study protein folding.
    Lassalle MW; Akasaka K
    Methods Mol Biol; 2007; 350():21-38. PubMed ID: 16957315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization.
    Benison G; Nyarko A; Barbar E
    J Mol Biol; 2006 Oct; 362(5):1082-93. PubMed ID: 16949604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR.
    Eliezer D; Jennings PA; Dyson HJ; Wright PE
    FEBS Lett; 1997 Nov; 417(1):92-6. PubMed ID: 9395082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.