BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20843027)

  • 1. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44.
    Somasunderam A; Thiviyanathan V; Tanaka T; Li X; Neerathilingam M; Lokesh GL; Mann A; Peng Y; Ferrari M; Klostergaard J; Gorenstein DG
    Biochemistry; 2010 Oct; 49(42):9106-12. PubMed ID: 20843027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker.
    Ababneh N; Alshaer W; Allozi O; Mahafzah A; El-Khateeb M; Hillaireau H; Noiray M; Fattal E; Ismail S
    Nucleic Acid Ther; 2013 Dec; 23(6):401-7. PubMed ID: 24171482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration.
    Bourguignon LY; Zhu H; Shao L; Chen YW
    J Biol Chem; 2001 Mar; 276(10):7327-36. PubMed ID: 11084024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid.
    Liu D; Sy MS
    J Exp Med; 1996 May; 183(5):1987-94. PubMed ID: 8642309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-aptamers: a bead-based selection method for random incorporation of druglike moieties onto next-generation aptamers for enhanced binding.
    He W; Elizondo-Riojas MA; Li X; Lokesh GL; Somasunderam A; Thiviyanathan V; Volk DE; Durland RH; Englehardt J; Cavasotto CN; Gorenstein DG
    Biochemistry; 2012 Oct; 51(42):8321-3. PubMed ID: 23057694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-CD44 DNA Aptamers Selectively Target Cancer Cells.
    Pęcak A; Skalniak Ł; Pels K; Książek M; Madej M; Krzemień D; Malicki S; Władyka B; Dubin A; Holak TA; Dubin G
    Nucleic Acid Ther; 2020 Oct; 30(5):289-298. PubMed ID: 32379519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration.
    Bourguignon LY; Zhu H; Shao L; Chen YW
    J Biol Chem; 2000 Jan; 275(3):1829-38. PubMed ID: 10636882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration.
    Iida J; Clancy R; Dorchak J; Somiari RI; Somiari S; Cutler ML; Mural RJ; Shriver CD
    PLoS One; 2014; 9(2):e88712. PubMed ID: 24586375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of hyaluronidase as an anticancer agent inhibiting CD44.
    Shakouri A; Parvan R; Adljouy N; Abdolalizadeh J
    Biomed Chromatogr; 2020 Jan; 34(1):e4709. PubMed ID: 31630417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogene-dependent expression of CD44 in Balb/c 3T3 derivatives: correlation with metastatic competence.
    Kogerman P; Sy MS; Culp LA
    Clin Exp Metastasis; 1996 Jan; 14(1):73-82. PubMed ID: 8521619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DNA aptamer binds stemness-enriched cancer cells in pancreatic cancer.
    Kim YJ; Lee HS; Jung DE; Kim JM; Song SY
    J Mol Recognit; 2017 Apr; 30(4):. PubMed ID: 27891685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains.
    Faller CE; Guvench O
    Proteins; 2014 Nov; 82(11):3079-89. PubMed ID: 25116630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells.
    Bourguignon LY; Singleton PA; Zhu H; Zhou B
    J Biol Chem; 2002 Oct; 277(42):39703-12. PubMed ID: 12145287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA aptamers that bind to PrP(C) and not PrP(Sc) show sequence and structure specificity.
    Takemura K; Wang P; Vorberg I; Surewicz W; Priola SA; Kanthasamy A; Pottathil R; Chen SG; Sreevatsan S
    Exp Biol Med (Maywood); 2006 Feb; 231(2):204-14. PubMed ID: 16446497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments.
    Takeda M; Terasawa H; Sakakura M; Yamaguchi Y; Kajiwara M; Kawashima H; Miyasaka M; Shimada I
    J Biol Chem; 2003 Oct; 278(44):43550-5. PubMed ID: 12928429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity.
    Sleeman J; Rudy W; Hofmann M; Moll J; Herrlich P; Ponta H
    J Cell Biol; 1996 Nov; 135(4):1139-50. PubMed ID: 8922392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of CD44E/s dual-targeting DNA aptamer as nanoprobe to deliver treatment in hepatocellular carcinoma.
    Lo CW; Chan CKW; Yu J; He M; Choi CHJ; Lau JYW; Wong N
    Nanotheranostics; 2022; 6(2):161-174. PubMed ID: 34976591
    [No Abstract]   [Full Text] [Related]  

  • 18. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function.
    Lokeshwar VB; Fregien N; Bourguignon LY
    J Cell Biol; 1994 Aug; 126(4):1099-109. PubMed ID: 7519619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Efficiency of Hyaluronic Acid for Tumor Targeting via CD44.
    Spadea A; Rios de la Rosa JM; Tirella A; Ashford MB; Williams KJ; Stratford IJ; Tirelli N; Mehibel M
    Mol Pharm; 2019 Jun; 16(6):2481-2493. PubMed ID: 31013093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells.
    Tan S; Yamashita A; Gao SJ; Kurisawa M
    Acta Biomater; 2019 Aug; 94():320-329. PubMed ID: 31125725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.