BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20843079)

  • 1. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.
    Arosio P; Jaquet B; Wu H; Morbidelli M
    Biophys Chem; 2012 Jul; 168-169():19-27. PubMed ID: 22750560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the conformational stability of the CH2 domain on the aggregation and peptide cleavage of a humanized IgG.
    Kameoka D; Ueda T; Imoto T
    Appl Biochem Biotechnol; 2011 Jul; 164(5):642-54. PubMed ID: 21279469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies.
    Chen S; Lau H; Brodsky Y; Kleemann GR; Latypov RF
    Protein Sci; 2010 Jun; 19(6):1191-204. PubMed ID: 20512972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies.
    Ejima D; Tsumoto K; Fukada H; Yumioka R; Nagase K; Arakawa T; Philo JS
    Proteins; 2007 Mar; 66(4):954-62. PubMed ID: 17154421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of degradation processes in IgG1 monoclonal antibodies by limited proteolysis coupled with weak cation-exchange HPLC.
    Lau H; Pace D; Yan B; McGrath T; Smallwood S; Patel K; Park J; Park SS; Latypov RF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Apr; 878(11-12):868-76. PubMed ID: 20206584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization.
    Skamris T; Tian X; Thorolfsson M; Karkov HS; Rasmussen HB; Langkilde AE; Vestergaard B
    Pharm Res; 2016 Mar; 33(3):716-28. PubMed ID: 26563206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.
    Li CH; Narhi LO; Wen J; Dimitrova M; Wen ZQ; Li J; Pollastrini J; Nguyen X; Tsuruda T; Jiang Y
    Biochemistry; 2012 Dec; 51(50):10056-65. PubMed ID: 23078371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298.
    Zheng JY; Janis LJ
    Int J Pharm; 2006 Feb; 308(1-2):46-51. PubMed ID: 16316730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody.
    Majumdar R; Manikwar P; Hickey JM; Samra HS; Sathish HA; Bishop SM; Middaugh CR; Volkin DB; Weis DD
    Biochemistry; 2013 May; 52(19):3376-89. PubMed ID: 23594236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein.
    Shukla AA; Gupta P; Han X
    J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alternatively folded state of the antibody C(H)3 domain.
    Thies MJ; Kammermeier R; Richter K; Buchner J
    J Mol Biol; 2001 Jun; 309(5):1077-85. PubMed ID: 11399080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the chromatographic properties of IgG1 and IgG2 antibody subclasses.
    Ghose S; Ladwig J; Allen M
    Biotechnol Appl Biochem; 2010 Dec; 57(3):111-6. PubMed ID: 20874708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions.
    Zhang-van Enk J; Mason BD; Yu L; Zhang L; Hamouda W; Huang G; Liu D; Remmele RL; Zhang J
    Mol Pharm; 2013 Feb; 10(2):619-30. PubMed ID: 23256580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.
    Sahin E; Weiss WF; Kroetsch AM; King KR; Kessler RK; Das TK; Roberts CJ
    J Pharm Sci; 2012 May; 101(5):1678-87. PubMed ID: 22246657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions.
    Zhang J; Frey V; Corcoran M; Zhang-van Enk J; Subramony JA
    Mol Pharm; 2016 Oct; 13(10):3362-3369. PubMed ID: 27541006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.