BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20843682)

  • 1. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings.
    Fan LM; Ma ZQ; Liang JQ; Li HF; Wang ET; Wei GH
    Bioresour Technol; 2011 Jan; 102(2):703-9. PubMed ID: 20843682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.
    Li Z; Ma Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2014 Mar; 80(6):1961-71. PubMed ID: 24441157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings.
    Li Z; Ma Z; Hao X; Wei G
    J Bacteriol; 2012 Mar; 194(5):1267-8. PubMed ID: 22328762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.
    Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.
    Kong Z; Mohamad OA; Deng Z; Liu X; Glick BR; Wei G
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12479-89. PubMed ID: 25903186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti.
    Villegas Mdel C; Rome S; Mauré L; Domergue O; Gardan L; Bailly X; Cleyet-Marel JC; Brunel B
    Syst Appl Microbiol; 2006 Nov; 29(7):526-38. PubMed ID: 16413160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia.
    Mnasri B; Badri Y; Saïdi S; de Lajudie P; Mhamdi R
    Syst Appl Microbiol; 2009 Dec; 32(8):583-92. PubMed ID: 19665858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines.
    Kiss E; Huguet T; Poinsot V; Batut J
    Mol Plant Microbe Interact; 2004 Mar; 17(3):235-44. PubMed ID: 15000390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypical and genotypical characteristics of root-nodulating bacteria isolated from annual Medicago spp. in Soummam Valley (Algeria).
    Sebbane N; Sahnoune M; Zakhia F; Willems A; Benallaoua S; de Lajudie P
    Lett Appl Microbiol; 2006 Mar; 42(3):235-41. PubMed ID: 16478510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China.
    Wei G; Fan L; Zhu W; Fu Y; Yu J; Tang M
    J Hazard Mater; 2009 Feb; 162(1):50-6. PubMed ID: 18562095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico.
    Silva C; Kan FL; Martínez-Romero E
    FEMS Microbiol Ecol; 2007 Jun; 60(3):477-89. PubMed ID: 17386032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.
    Xie P; Hao X; Herzberg M; Luo Y; Nies DH; Wei G
    J Environ Sci (China); 2015 Jan; 27():179-87. PubMed ID: 25597676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China.
    Kan FL; Chen ZY; Wang ET; Tian CF; Sui XH; Chen WX
    Arch Microbiol; 2007 Aug; 188(2):103-15. PubMed ID: 17541555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020.
    Li Z; Lu M; Wei G
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1655-60. PubMed ID: 23526229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of real-time PCR assay for detection and quantification of Sinorhizobium meliloti in soil and plant tissue.
    Trabelsi D; Pini F; Aouani ME; Bazzicalupo M; Mengoni A
    Lett Appl Microbiol; 2009 Mar; 48(3):355-61. PubMed ID: 19207854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
    Capela D; Filipe C; Bobik C; Batut J; Bruand C
    Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti.
    Pii Y; Astegno A; Peroni E; Zaccardelli M; Pandolfini T; Crimi M
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1577-87. PubMed ID: 19888823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth.
    López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O
    Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel and cobalt resistance properties of
    Li Z; Song X; Wang J; Bai X; Gao E; Wei G
    PeerJ; 2018; 6():e5202. PubMed ID: 30018859
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach.
    Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P
    Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.