These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20843685)

  • 1. Co-deoxy-liquefaction of biomass and vegetable oil to hydrocarbon oil: Influence of temperature, residence time, and catalyst.
    Chen Y; Yang F; Wu L; Wang C; Yang Z
    Bioresour Technol; 2011 Jan; 102(2):1933-41. PubMed ID: 20843685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production.
    Chen Y; Wang C; Lu W; Yang Z
    Bioresour Technol; 2010 Jun; 101(12):4600-7. PubMed ID: 20153171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and upgrading of hydrocarbon oil from deoxy-liquefaction of oil crop.
    Chen Y; Wang F; Yang Z
    Bioresour Technol; 2013 Oct; 146():472-477. PubMed ID: 23958679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the influence of extractives on the oil yield and alkane production obtained from three kinds of biomass via deoxy-liquefaction.
    Wang Y; Wu L; Wang C; Yu J; Yang Z
    Bioresour Technol; 2011 Jul; 102(14):7190-5. PubMed ID: 21596558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.
    Wang Y; Dai L; Fan L; Cao L; Zhou Y; Zhao Y; Liu Y; Ruan R
    Waste Manag; 2017 Mar; 61():276-282. PubMed ID: 28129927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic upgrading of oil fractions separated from food waste leachate.
    Heo HS; Kim SG; Jeong KE; Jeon JK; Park SH; Kim JM; Kim SS; Park YK
    Bioresour Technol; 2011 Feb; 102(4):3952-7. PubMed ID: 21177101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.
    Xu J; Jiang J; Sun Y; Chen J
    Bioresour Technol; 2010 Dec; 101(24):9803-6. PubMed ID: 20696566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst.
    Yang C; Jia L; Chen C; Liu G; Fang W
    Bioresour Technol; 2011 Mar; 102(6):4580-4. PubMed ID: 21262568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor.
    Chew TL; Bhatia S
    Bioresour Technol; 2009 May; 100(9):2540-5. PubMed ID: 19138514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.
    Li J; Wang G; Chen M; Li J; Yang Y; Zhu Q; Jiang X; Wang Z; Liu H
    Bioresour Technol; 2014 Oct; 169():110-118. PubMed ID: 25038506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites.
    Sankaranarayanan TM; Banu M; Pandurangan A; Sivasanker S
    Bioresour Technol; 2011 Nov; 102(22):10717-23. PubMed ID: 21945166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor.
    Wang Y; Wang J
    Bioresour Technol; 2016 Aug; 214():700-710. PubMed ID: 27209452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis.
    Zhuang Y; Guo J; Chen L; Li D; Liu J; Ye N
    Bioresour Technol; 2012 Jul; 116():133-9. PubMed ID: 22609667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.
    Zhao X; Wei L; Julson J; Qiao Q; Dubey A; Anderson G
    N Biotechnol; 2015 Mar; 32(2):300-12. PubMed ID: 25639196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.
    Zhang B; Zhong Z; Xie Q; Liu S; Ruan R
    J Environ Sci (China); 2016 Jul; 45():240-7. PubMed ID: 27372139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol.
    Peng J; Chen P; Lou H; Zheng X
    Bioresour Technol; 2009 Jul; 100(13):3415-8. PubMed ID: 19269811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes.
    Wang C; Tian Z; Wang L; Xu R; Liu Q; Qu W; Ma H; Wang B
    ChemSusChem; 2012 Oct; 5(10):1974-83. PubMed ID: 22764086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass.
    Meryemoğlu B; Hasanoğlu A; Irmak S; Erbatur O
    Bioresour Technol; 2014 Jan; 151():278-83. PubMed ID: 24262837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.
    Taufiqurrahmi N; Mohamed AR; Bhatia S
    Bioresour Technol; 2011 Nov; 102(22):10686-94. PubMed ID: 21924606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.