These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20843803)

  • 1. Structure of Escherichia coli AlkA in complex with undamaged DNA.
    Bowman BR; Lee S; Wang S; Verdine GL
    J Biol Chem; 2010 Nov; 285(46):35783-91. PubMed ID: 20843803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a DNA glycosylase searching for lesions.
    Banerjee A; Santos WL; Verdine GL
    Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
    Hollis T; Ichikawa Y; Ellenberger T
    EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA.
    Bowman BR; Lee S; Wang S; Verdine GL
    Structure; 2008 Aug; 16(8):1166-74. PubMed ID: 18682218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization and mutational studies of a novel 3-methlyadenine DNA glycosylase II from the hyperthermophilic Thermococcus gammatolerans.
    Jiang D; Zhang L; Dong K; Gong Y; Oger P
    DNA Repair (Amst); 2021 Jan; 97():103030. PubMed ID: 33360524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Structure and conformational dynamics of base excision repair DNA glycosylases].
    Zharkov DO
    Mol Biol (Mosk); 2007; 41(5):772-86. PubMed ID: 18240561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
    Lee S; Verdine GL
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18497-502. PubMed ID: 19841264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM.
    Sung RJ; Zhang M; Qi Y; Verdine GL
    J Biol Chem; 2012 May; 287(22):18044-54. PubMed ID: 22465958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex.
    Banerjee A; Verdine GL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15020-5. PubMed ID: 17015827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM.
    Sung RJ; Zhang M; Qi Y; Verdine GL
    J Biol Chem; 2013 Apr; 288(14):10012-10023. PubMed ID: 23404556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1.
    Kladova OA; Grin IR; Fedorova OS; Kuznetsov NA; Zharkov DO
    J Mol Biol; 2019 Mar; 431(6):1098-1112. PubMed ID: 30716333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functions of base flipping in E. coli nucleotide excision repair.
    Malta E; Verhagen CP; Moolenaar GF; Filippov DV; van der Marel GA; Goosen N
    DNA Repair (Amst); 2008 Oct; 7(10):1647-58. PubMed ID: 18638572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II).
    Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H
    J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates.
    Michelson AZ; Chen M; Wang K; Lee JK
    J Am Chem Soc; 2012 Jun; 134(23):9622-33. PubMed ID: 22554094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.