BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20844122)

  • 1. Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep.
    Datta S; Desarnaud F
    J Neurosci; 2010 Sep; 30(37):12263-73. PubMed ID: 20844122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of pedunculopontine tegmental protein kinase A: a mechanism for rapid eye movement sleep generation in the freely moving rat.
    Bandyopadhya RS; Datta S; Saha S
    J Neurosci; 2006 Aug; 26(35):8931-42. PubMed ID: 16943549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.
    Datta S; Siwek DF; Stack EC
    Neuroscience; 2009 Sep; 163(1):397-414. PubMed ID: 19540313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat.
    Datta S
    J Neurophysiol; 2007 Jun; 97(6):3841-50. PubMed ID: 17409165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep.
    Barnes AK; Koul-Tiwari R; Garner JM; Geist PA; Datta S
    J Neurochem; 2017 Apr; 141(1):111-123. PubMed ID: 28027399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat.
    Datta S; Prutzman SL
    J Neurophysiol; 2005 Sep; 94(3):1928-37. PubMed ID: 15888525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness.
    Datta S; O'Malley MW; Patterson EH
    J Neurosci; 2011 Nov; 31(47):17007-16. PubMed ID: 22114270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel role for calcium/calmodulin kinase II within the brainstem pedunculopontine tegmentum for the regulation of wakefulness and rapid eye movement sleep.
    Stack EC; Desarnaud F; Siwek DF; Datta S
    J Neurochem; 2010 Jan; 112(1):271-81. PubMed ID: 19860859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of extracellular signal-regulated kinase signaling in the pedunculopontine tegmental cells is involved in the maintenance of sleep in rats.
    Desarnaud F; Macone BW; Datta S
    J Neurochem; 2011 Feb; 116(4):577-87. PubMed ID: 21166678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.
    Petrovic J; Lazic K; Kalauzi A; Saponjic J
    Behav Brain Res; 2014 Sep; 271():258-68. PubMed ID: 24946074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats.
    Deurveilher S; Hennevin E
    Eur J Neurosci; 2001 May; 13(10):1963-76. PubMed ID: 11403690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata.
    Pal D; Mallick BN
    Neuroscience; 2009 Dec; 164(2):404-14. PubMed ID: 19698764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.
    Santos PD; Targa ADS; Noseda ACD; Rodrigues LS; Fagotti J; Lima MMS
    Mol Neurobiol; 2017 Sep; 54(7):5721-5729. PubMed ID: 27660264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rapid eye movement sleep in the freely moving rat: local microinjection of serotonin, norepinephrine, and adenosine into the brainstem.
    Datta S; Mavanji V; Patterson EH; Ulloor J
    Sleep; 2003 Aug; 26(5):513-20. PubMed ID: 12938803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.
    Khanday MA; Somarajan BI; Mehta R; Mallick BN
    eNeuro; 2016; 3(6):. PubMed ID: 27957531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons.
    Huitron-Resendiz S; Kristensen MP; Sánchez-Alavez M; Clark SD; Grupke SL; Tyler C; Suzuki C; Nothacker HP; Civelli O; Criado JR; Henriksen SJ; Leonard CS; de Lecea L
    J Neurosci; 2005 Jun; 25(23):5465-74. PubMed ID: 15944374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats.
    Fink AM; Burke LA; Sharma K
    Respir Physiol Neurobiol; 2021 Jun; 288():103653. PubMed ID: 33716095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.