BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20844258)

  • 1. Circulation and metabolic rates in a natural hibernator: an integrative physiological model.
    Hampton M; Nelson BT; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1478-88. PubMed ID: 20844258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal torpor and normothermic energy metabolism in the Eastern chipmunk (Tamias striatus).
    Levesque DL; Tattersall GJ
    J Comp Physiol B; 2010 Feb; 180(2):279-92. PubMed ID: 19756651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.
    Nelson BT; Ding X; Boney-Montoya J; Gerard RD; Kliewer SA; Andrews MT
    PLoS One; 2013; 8(1):e53574. PubMed ID: 23301087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data.
    MacCannell ADV; Jackson EC; Mathers KE; Staples JF
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29361606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels.
    Schwartz C; Ballinger MA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(10):R1292-300. PubMed ID: 26354846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator.
    Buck CL; Barnes BM
    Am J Physiol Regul Integr Comp Physiol; 2000 Jul; 279(1):R255-62. PubMed ID: 10896889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.
    Hindle AG; Grabek KR; Epperson LE; Karimpour-Fard A; Martin SL
    Physiol Genomics; 2014 May; 46(10):348-61. PubMed ID: 24642758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure.
    Russell RL; O'Neill PH; Epperson LE; Martin SL
    J Comp Physiol B; 2010 Nov; 180(8):1165-72. PubMed ID: 20556614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator.
    Regan MD; Chiang E; Martin SL; Porter WP; Assadi-Porter FM; Carey HV
    Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R764-R775. PubMed ID: 30969844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased heat loss affects hibernation in golden-mantled ground squirrels.
    Kauffman AS; Paul MJ; Zucker I
    Am J Physiol Regul Integr Comp Physiol; 2004 Jul; 287(1):R167-73. PubMed ID: 15016623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.
    Hindle AG; Martin SL
    PLoS One; 2013; 8(8):e71627. PubMed ID: 23951209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.
    Jani A; Orlicky DJ; Karimpour-Fard A; Epperson LE; Russell RL; Hunter LE; Martin SL
    Physiol Genomics; 2012 Jul; 44(14):717-27. PubMed ID: 22643061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of arousal episodes in hibernating arctic ground squirrels.
    Karpovich SA; Tøien Ø; Buck CL; Barnes BM
    J Comp Physiol B; 2009 Aug; 179(6):691-700. PubMed ID: 19277682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic cycles in a circannual hibernator.
    Epperson LE; Karimpour-Fard A; Hunter LE; Martin SL
    Physiol Genomics; 2011 Jul; 43(13):799-807. PubMed ID: 21540299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torpor Does Not Influence Spatial Memory in Hibernating Golden-Mantled Ground Squirrels (
    Hensleigh E; Murtishaw AS; Treat MD; Heaney CF; Bolton MM; Sabbagh JJ; Calvin KN; Kinney JW; van Breukelen F
    Physiol Biochem Zool; 2022; 95(5):390-399. PubMed ID: 35930827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels.
    Wei Y; Zhang J; Xu S; Peng X; Yan X; Li X; Wang H; Chang H; Gao Y
    Open Biol; 2018 Oct; 8(10):. PubMed ID: 30305429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermogenic capacity at subzero temperatures: how low can a hibernator go?
    Richter MM; Williams CT; Lee TN; Tøien Ø; Florant GL; Barnes BM; Buck CL
    Physiol Biochem Zool; 2015; 88(1):81-9. PubMed ID: 25590595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.
    Jinka TR; Tøien Ø; Drew KL
    J Neurosci; 2011 Jul; 31(30):10752-8. PubMed ID: 21795527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor.
    Andrews MT; Russeth KP; Drewes LR; Henry PG
    Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R383-93. PubMed ID: 19052316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.