BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20844318)

  • 1. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.
    Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB
    Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study.
    Mahapatro A; Johnson DM; Patel DN; Feldman MD; Ayon AA; Agrawal CM
    Nanomedicine; 2006 Sep; 2(3):182-90. PubMed ID: 17292141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.
    Yang Z; Wang J; Luo R; Maitz MF; Jing F; Sun H; Huang N
    Biomaterials; 2010 Mar; 31(8):2072-83. PubMed ID: 20022107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term stability of self-assembled monolayers on 316L stainless steel.
    Kaufmann CR; Mani G; Marton D; Johnson DM; Agrawal CM
    Biomed Mater; 2010 Apr; 5(2):25008. PubMed ID: 20339168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.
    Guo W; Zhu J; Cheng Z; Zhang Z; Zhu X
    ACS Appl Mater Interfaces; 2011 May; 3(5):1675-80. PubMed ID: 21528878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of fibrinogen adsorption onto 316L stainless steel.
    Gettens RT; Gilbert JL
    J Biomed Mater Res A; 2007 May; 81(2):465-73. PubMed ID: 17133446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and surface characterization of HMDI-activated 316L stainless steel for coronary artery stents.
    Chuang TW; Chen MH; Lin FH
    J Biomed Mater Res A; 2008 Jun; 85(3):722-30. PubMed ID: 17896759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of bioactive nano-multiplayer films on medical stainless steel fabrication and haemocompatibility].
    Yue L; Zhao H; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):108-12. PubMed ID: 18435269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment.
    Harvey J; Bergdahl A; Dadafarin H; Ling L; Davis EC; Omanovic S
    Biotechnol Lett; 2012 Jun; 34(6):1159-65. PubMed ID: 22361964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding.
    Chuang TW; Lin DT; Lin FH
    J Biomed Mater Res A; 2008 Sep; 86(3):648-61. PubMed ID: 18022801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(methyl methacrylate) grafting onto stainless steel surfaces: application to drug-eluting stents.
    Shaulov Y; Okner R; Levi Y; Tal N; Gutkin V; Mandler D; Domb AJ
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2519-28. PubMed ID: 20356122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haemocompatibility of polymer-coated stainless steel stents as compared to uncoated stents.
    Mrowietz C; Franke RP; Seyfert UT; Park JW; Jung F
    Clin Hemorheol Microcirc; 2005; 32(2):89-103. PubMed ID: 15764818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.
    Eric Jones J; Chen M; Yu Q
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1363-74. PubMed ID: 24500866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.
    Zhong Q; Yan J; Qian X; Zhang T; Zhang Z; Li A
    Colloids Surf B Biointerfaces; 2014 Sep; 121():238-47. PubMed ID: 25016426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocoating of stainless steel coronary stents for extended release of paclitaxel.
    Okner R; Oron M; Tal N; Nyska A; Kumar N; Mandler D; Domb AJ
    J Biomed Mater Res A; 2009 Feb; 88(2):427-36. PubMed ID: 18306316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electropolymerized hydrophilic coating on stainless steel for biomedical applications.
    Trzaskowska PA; Kuźmińska A; Butruk-Raszeja B; Rybak E; Ciach T
    Colloids Surf B Biointerfaces; 2018 Jul; 167():499-508. PubMed ID: 29729627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties.
    Guillemot G; Vaca-Medina G; Martin-Yken H; Vernhet A; Schmitz P; Mercier-Bonin M
    Colloids Surf B Biointerfaces; 2006 May; 49(2):126-35. PubMed ID: 16621474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.