These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 20844321)
1. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Wright LD; Young RT; Andric T; Freeman JW Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321 [TBL] [Abstract][Full Text] [Related]
2. PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage. Wright LD; McKeon-Fischer KD; Cui Z; Nair LS; Freeman JW J Tissue Eng Regen Med; 2014 Dec; 8(12):946-54. PubMed ID: 23109502 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue. Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879 [TBL] [Abstract][Full Text] [Related]
5. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
6. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Maleki H; Gharehaghaji AA; Moroni L; Dijkstra PJ Biofabrication; 2013 Sep; 5(3):035014. PubMed ID: 23945472 [TBL] [Abstract][Full Text] [Related]
7. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
8. Electrospun polycaprolactone matrices with tensile properties suitable for soft tissue engineering. Elamparithi A; Punnoose AM; Kuruvilla S; Ravi M; Rao S; Paul SF Artif Cells Nanomed Biotechnol; 2016 May; 44(3):878-84. PubMed ID: 25619755 [TBL] [Abstract][Full Text] [Related]
9. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels. Horner CB; Ico G; Johnson J; Zhao Y; Nam J J Mech Behav Biomed Mater; 2016 Jun; 59():207-219. PubMed ID: 26774618 [TBL] [Abstract][Full Text] [Related]
10. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888 [TBL] [Abstract][Full Text] [Related]
11. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666 [TBL] [Abstract][Full Text] [Related]
13. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. Zhu L; Zhang Y; Ji Y J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114 [TBL] [Abstract][Full Text] [Related]
14. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046 [TBL] [Abstract][Full Text] [Related]
15. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Shim IK; Jung MR; Kim KH; Seol YJ; Park YJ; Park WH; Lee SJ J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):150-60. PubMed ID: 20725960 [TBL] [Abstract][Full Text] [Related]
16. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
17. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Sonseca A; Sahay R; Stepien K; Bukala J; Wcislek A; McClain A; Sobolewski P; Sui X; Puskas JE; Kohn J; Wagner HD; El Fray M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110505. PubMed ID: 31923996 [TBL] [Abstract][Full Text] [Related]
18. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Saito E; Liu Y; Migneco F; Hollister SJ Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030 [TBL] [Abstract][Full Text] [Related]
19. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
20. Mechanical testing of electrospun PCL fibers. Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]