BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20844327)

  • 21. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties.
    Kim JY; Noh JH; Zhu K; Halverson AF; Neale NR; Park S; Hong KS; Frank AJ
    ACS Nano; 2011 Apr; 5(4):2647-56. PubMed ID: 21395234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.
    Fuke N; Hoch LB; Koposov AY; Manner VW; Werder DJ; Fukui A; Koide N; Katayama H; Sykora M
    ACS Nano; 2010 Nov; 4(11):6377-86. PubMed ID: 20961101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large size, high efficiency fiber-shaped dye-sensitized solar cells.
    Lv Z; Fu Y; Hou S; Wang D; Wu H; Zhang C; Chu Z; Zou D
    Phys Chem Chem Phys; 2011 Jun; 13(21):10076-83. PubMed ID: 21509400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell.
    Kim J; Kim J; Lee M
    Nanotechnology; 2010 Aug; 21(34):345203. PubMed ID: 20671364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2-MWCNT nanocomposites.
    Muduli S; Lee W; Dhas V; Mujawar S; Dubey M; Vijayamohanan K; Han SH; Ogale S
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2030-5. PubMed ID: 20355829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film.
    Jiu J; Isoda S; Wang F; Adachi M
    J Phys Chem B; 2006 Feb; 110(5):2087-92. PubMed ID: 16471788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles.
    Ranga Rao A; Dutta V
    Nanotechnology; 2008 Nov; 19(44):445712. PubMed ID: 21832754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent developments in solid-state dye-sensitized solar cells.
    Yum JH; Chen P; Grätzel M; Nazeeruddin MK
    ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell.
    Lee S; Kim JY; Youn SH; Park M; Hong KS; Jung HS; Lee JK; Shin H
    Langmuir; 2007 Nov; 23(23):11907-10. PubMed ID: 17927224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.
    Kim JY; Kang SH; Kim HS; Sung YE
    Langmuir; 2010 Feb; 26(4):2864-70. PubMed ID: 19835409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes.
    Yamaguchi T; Tobe N; Matsumoto D; Arakawa H
    Chem Commun (Camb); 2007 Dec; (45):4767-9. PubMed ID: 18004435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.
    Zhou ZJ; Fan JQ; Wang X; Zhou WH; Du ZL; Wu SX
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4349-53. PubMed ID: 21966998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror.
    Lee JY; Lee S; Park JK; Jun Y; Lee YG; Kim KM; Yun JH; Cho KY
    Opt Express; 2010 Nov; 18 Suppl 4():A522-7. PubMed ID: 21165084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing performance of P3HT:TiO₂ solar cells using doped and surface modified TiO₂ nanorods.
    Tu YC; Lim H; Chang CY; Shyue JJ; Su WF
    J Colloid Interface Sci; 2015 Jun; 448():315-9. PubMed ID: 25746184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes.
    Zhang Q; Guo X; Huang X; Huang S; Li D; Luo Y; Shen Q; Toyoda T; Meng Q
    Phys Chem Chem Phys; 2011 Mar; 13(10):4659-67. PubMed ID: 21283841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application.
    Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST
    ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination.
    Wang KP; Teng H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9489-96. PubMed ID: 19830333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.