These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20844367)

  • 1. Evaluating aortic stiffness through an arm cuff oscillometric device: is validation against invasive measurements enough?
    Parati G; De Buyzere M
    J Hypertens; 2010 Oct; 28(10):2003-6. PubMed ID: 20844367
    [No Abstract]   [Full Text] [Related]  

  • 2. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity.
    Horváth IG; Németh A; Lenkey Z; Alessandri N; Tufano F; Kis P; Gaszner B; Cziráki A
    J Hypertens; 2010 Oct; 28(10):2068-75. PubMed ID: 20651604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the Arteriograph working principle: questions still remain.
    Trachet B; Reymond P; Kips J; Vermeersch S; Swillens A; Stergiopulos N; Segers P
    J Hypertens; 2011 Mar; 29(3):619; author reply 620. PubMed ID: 21317726
    [No Abstract]   [Full Text] [Related]  

  • 4. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.
    Liu SH; Wang JJ; Cheng DC
    Biomed Tech (Berl); 2009 Aug; 54(4):171-7. PubMed ID: 19807282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart disease and changes in pulse wave velocity and pulse pressure amplification in the elderly over 80 years: the PARTAGE Study.
    Salvi P; Safar ME; Labat C; Borghi C; Lacolley P; Benetos A;
    J Hypertens; 2010 Oct; 28(10):2127-33. PubMed ID: 20634719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous non-invasive blood pressure monitoring by brachial artery displacement method in high-risk surgical patients.
    Weiss BM; Spahn DR; Keller E; Seifert B; Pasch T
    Eur J Anaesthesiol; 1995 Nov; 12(6):555-63. PubMed ID: 8665877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary evaluation of the mean arterial pressure as measured by cuff oscillometry.
    Smulyan H; Sheehe PR; Safar ME
    Am J Hypertens; 2008 Feb; 21(2):166-71. PubMed ID: 18174881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new oscillometry-based method for estimating the brachial arterial compliance under loaded conditions.
    Liu SH; Wang JJ; Huang KS
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2463-70. PubMed ID: 18838372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indices of pulse wave analysis are better predictors of left ventricular mass reduction than cuff pressure.
    Hashimoto J; Imai Y; O'Rourke MF
    Am J Hypertens; 2007 Apr; 20(4):378-84. PubMed ID: 17386343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arterial stiffness as determinant of increased amino terminal pro-B-type natriuretic peptide levels in individuals with and without cardiovascular disease--the Rotterdam Study.
    Rutten JH; Mattace-Raso FU; Verwoert GC; Lindemans J; Hofman A; Witteman JC; van den Meiracker AH
    J Hypertens; 2010 Oct; 28(10):2061-7. PubMed ID: 20844371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis.
    Rajani R; Chowienczyk P; Redwood S; Guilcher A; Chambers JB
    J Hypertens; 2008 Dec; 26(12):2381-8. PubMed ID: 19008716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients.
    Bur A; Herkner H; Vlcek M; Woisetschläger C; Derhaschnig U; Delle Karth G; Laggner AN; Hirschl MM
    Crit Care Med; 2003 Mar; 31(3):793-9. PubMed ID: 12626986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial stiffness: beyond pulse wave velocity and its measurement.
    Lim HS; Lip GY
    J Hum Hypertens; 2008 Oct; 22(10):656-8. PubMed ID: 18509344
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of heart rate on wave reflections may be determined by the level of aortic stiffness: clinical and technical implications.
    Papaioannou TG; Vlachopoulos CV; Alexopoulos NA; Dima I; Pietri PG; Protogerou AD; Vyssoulis GG; Stefanadis CI
    Am J Hypertens; 2008 Mar; 21(3):334-40. PubMed ID: 18219305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optical oscillometric method for neonatal and premature infant blood pressure monitoring.
    Roeder RA; Geddes LA
    Adv Neonatal Care; 2009 Apr; 9(2):77-81. PubMed ID: 19363328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a novel method to determine non-invasively the rate of central aortic pressure changes.
    Gorenberg M; Marmor A
    J Med Eng Technol; 2008; 32(4):257-62. PubMed ID: 18666005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainties in estimating the site of arterial wave reflection.
    Schillaci G; Pucci G; Cziráki A
    Hypertension; 2009 Jan; 53(1):e7; author reply e8. PubMed ID: 19015399
    [No Abstract]   [Full Text] [Related]  

  • 19. A simplified computer model of cardiovascular system with an arm branch.
    Chen B; Song T; Guo T; Xiang H; Liu Y; Qin Y; Cao Z; Yu M
    Biomed Mater Eng; 2014; 24(6):2555-61. PubMed ID: 25226957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What factors accelerate aortic stiffening in hemodialysis patients? An observational study.
    Matsumae T; Ueda K; Abe Y; Nishimura S; Murakami G; Saito T
    Hypertens Res; 2010 Mar; 33(3):243-9. PubMed ID: 20075931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.