BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20844909)

  • 1. Docking of the alkaloid geissospermine into acetylcholinesterase: a natural scaffold targeting the treatment of Alzheimer's disease.
    Araújo JQ; Lima JA; Pinto Ada C; de Alencastro RB; Albuquerque MG
    J Mol Model; 2011 Jun; 17(6):1401-12. PubMed ID: 20844909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting fish toxicity of active pharmaceutical ingredients: Mechanistic insights from integrated ligand-/structure-based assessments on acetylcholinesterase.
    Minovski N; Saçan MT; Eminoğlu EM; Erdem SS; Novič M
    Ecotoxicol Environ Saf; 2019 Apr; 170():548-558. PubMed ID: 30572250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer's disease therapy.
    Choudhary MI; Nawaz SA; Zaheer-ul-Haq ; Azim MK; Ghayur MN; Lodhi MA; Jalil S; Khalid A; Ahmed A; Rode BM; Atta-ur-Rahman ; Gilani AU; Ahmad VU
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1171-7. PubMed ID: 16021692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs.
    Kryger G; Silman I; Sussman JL
    Structure; 1999 Mar; 7(3):297-307. PubMed ID: 10368299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking.
    Pilger C; Bartolucci C; Lamba D; Tropsha A; Fels G
    J Mol Graph Model; 2001; 19(3-4):288-96, 374-8. PubMed ID: 11449566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.
    Zhou A; Hu J; Wang L; Zhong G; Pan J; Wu Z; Hui A
    J Mol Model; 2015 Oct; 21(10):277. PubMed ID: 26438408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular docking and receptor-specific 3D-QSAR studies of acetylcholinesterase inhibitors.
    Deb PK; Sharma A; Piplani P; Akkinepally RR
    Mol Divers; 2012 Nov; 16(4):803-23. PubMed ID: 22996404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of Torpedo californica acetylcholinesterase inhibition by the novel and orally active carbamate based anti-alzheimer drug ganstigmine (CHF-2819).
    Bartolucci C; Siotto M; Ghidini E; Amari G; Bolzoni PT; Racchi M; Villetti G; Delcanale M; Lamba D
    J Med Chem; 2006 Aug; 49(17):5051-8. PubMed ID: 16913695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.
    Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL
    Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geissoschizoline, a promising alkaloid for Alzheimer's disease: Inhibition of human cholinesterases, anti-inflammatory effects and molecular docking.
    Lima JA; R Costa TW; da Fonseca ACC; do Amaral RF; Nascimento MDDSB; Santos-Filho OA; de Miranda ALP; Ferreira Neto DC; Lima FRS; Hamerski L; Tinoco LW
    Bioorg Chem; 2020 Nov; 104():104215. PubMed ID: 32920358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs.
    Bartolucci C; Perola E; Pilger C; Fels G; Lamba D
    Proteins; 2001 Feb; 42(2):182-91. PubMed ID: 11119642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.
    Gurung AB; Aguan K; Mitra S; Bhattacharjee A
    J Biomol Struct Dyn; 2017 Jun; 35(8):1729-1742. PubMed ID: 27410776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative hydrogen bonds and mobility of the non-aromatic ring as selectivity determinants for human acetylcholinesterase to similar anti-Alzheimer's galantaminics: a computational study.
    Rocha REO; Lima LHF
    J Biomol Struct Dyn; 2019 Apr; 37(7):1843-1856. PubMed ID: 29697300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (-)-huperzine B: structural evidence for an active site rearrangement.
    Dvir H; Jiang HL; Wong DM; Harel M; Chetrit M; He XC; Jin GY; Yu GL; Tang XC; Silman I; Bai DL; Sussman JL
    Biochemistry; 2002 Sep; 41(35):10810-8. PubMed ID: 12196020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on a new series of THA analogues: effects of the aromatic residues that line the gorge of AChE.
    Pomponi M; Marta M; Colella A; Sacchi S; Patamia M; Gatta F; Capone F; Oliverio A; Pavone F
    FEBS Lett; 1997 Jun; 409(2):155-60. PubMed ID: 9202137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoterpene indole alkaloids with acetylcholinesterase inhibitory activity from the leaves of Rauvolfia vomitoria.
    Zhan G; Miao R; Zhang F; Chang G; Zhang L; Zhang X; Zhang H; Guo Z
    Bioorg Chem; 2020 Sep; 102():104136. PubMed ID: 32738570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol alkenyls from Semecarpus anacardium: acetylcholinesterase inhibition and binding mode predictions.
    Adhami HR; Linder T; Kaehlig H; Schuster D; Zehl M; Krenn L
    J Ethnopharmacol; 2012 Jan; 139(1):142-8. PubMed ID: 22075454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.