These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 20845180)
1. Estimation of plant protection product application dates for environmental fate modeling based on phenological stages of crops. Gericke D; Nekovar J; Horold C J Environ Sci Health B; 2010 Oct; 45(7):639-47. PubMed ID: 20845180 [TBL] [Abstract][Full Text] [Related]
2. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Nolan BT; Dubus IG; Surdyk N; Fowler HJ; Burton A; Hollis JM; Reichenberger S; Jarvis NJ Pest Manag Sci; 2008 Sep; 64(9):933-44. PubMed ID: 18416432 [TBL] [Abstract][Full Text] [Related]
3. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater. Vanderborght J; Tiktak A; Boesten JJ; Vereecken H Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955 [TBL] [Abstract][Full Text] [Related]
4. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level. Probst M; Berenzen N; Lentzen-Godding A; Schulz R Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635 [TBL] [Abstract][Full Text] [Related]
5. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [TBL] [Abstract][Full Text] [Related]
6. Development of agro-environmental scenarios to support pesticide risk assessment in Europe. Centofanti T; Hollis JM; Blenkinsop S; Fowler HJ; Truckell I; Dubus IG; Reichenberger S Sci Total Environ; 2008 Dec; 407(1):574-88. PubMed ID: 18817949 [TBL] [Abstract][Full Text] [Related]
7. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer. Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353 [TBL] [Abstract][Full Text] [Related]
8. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
9. Estimating pesticide exposure in tidal streams of Leadenwah Creek, South Carolina. Acevedo MF; Ablan M; Dickson KL; Waller WT; Mayer FL; Morton M J Toxicol Environ Health; 1997 Nov; 52(4):295-316. PubMed ID: 9354176 [TBL] [Abstract][Full Text] [Related]
10. The assessment of spray drift damage for ten major crops in Belgium. de Schampheleire M; Spanoghe P; Steurbaut W; Nuyttens D; Sonck B Commun Agric Appl Biol Sci; 2005; 70(4):1037-42. PubMed ID: 16628952 [TBL] [Abstract][Full Text] [Related]
11. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sahoo GB; Ray C; Mehnert E; Keefer DA Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784 [TBL] [Abstract][Full Text] [Related]
12. Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale. Ventura F; Vignudelli M; Poggi GM; Negri L; Dinelli G Int J Biometeorol; 2020 Jul; 64(7):1167-1181. PubMed ID: 32179985 [TBL] [Abstract][Full Text] [Related]
13. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED; Siewicki TC Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201 [TBL] [Abstract][Full Text] [Related]
14. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y; Zhang M J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487 [TBL] [Abstract][Full Text] [Related]
15. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related]
16. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status. Box RJ; Spielmann H Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470 [TBL] [Abstract][Full Text] [Related]
17. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios. Leitão S; Moreira-Santos M; Van den Brink PJ; Ribeiro R; José Cerejeira M; Sousa JP Ecotoxicol Environ Saf; 2014 May; 103():36-44. PubMed ID: 24562181 [TBL] [Abstract][Full Text] [Related]
18. Influence of input uncertainty on prediction of within-field pesticide leaching risks. Lindahl AM; Söderström M; Jarvis N J Contam Hydrol; 2008 Jun; 98(3-4):106-14. PubMed ID: 18495293 [TBL] [Abstract][Full Text] [Related]
19. Pesticide fate modelling in conservation tillage: Simulating the effect of mulch and cover crop on S-metolachlor leaching. Marín-Benito JM; Alletto L; Barriuso E; Bedos C; Benoit P; Pot V; Mamy L Sci Total Environ; 2018 Jul; 628-629():1508-1517. PubMed ID: 30045569 [TBL] [Abstract][Full Text] [Related]
20. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]