These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20845496)
1. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: degradation and tissue response. Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Dec; 95(3):940-9. PubMed ID: 20845496 [TBL] [Abstract][Full Text] [Related]
2. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response. Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255 [TBL] [Abstract][Full Text] [Related]
3. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films. Bat E; van Kooten TG; Feijen J; Grijpma DW Biomaterials; 2009 Aug; 30(22):3652-61. PubMed ID: 19356797 [TBL] [Abstract][Full Text] [Related]
4. In Vitro and In Vivo Degradation of Photo-Crosslinked Poly(Trimethylene Carbonate-co-ε-Caprolactone) Networks. van Bochove B; Rongen JJ; Hannink G; Seppälä JV; Poot AA; Grijpma DW Macromol Biosci; 2024 Mar; 24(3):e2300364. PubMed ID: 37923394 [TBL] [Abstract][Full Text] [Related]
5. Physical properties and erosion behavior of poly(trimethylene carbonate-co-ε-caprolactone) networks. Bat E; van Kooten TG; Harmsen MC; Plantinga JA; van Luyn MJ; Feijen J; Grijpma DW Macromol Biosci; 2013 May; 13(5):573-83. PubMed ID: 23427167 [TBL] [Abstract][Full Text] [Related]
6. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks. Rongen JJ; van Bochove B; Hannink G; Grijpma DW; Buma P J Biomed Mater Res A; 2016 Nov; 104(11):2823-32. PubMed ID: 27392321 [TBL] [Abstract][Full Text] [Related]
7. Trimethylene carbonate and epsilon-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation. Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Zhang Z; Grijpma DW; Feijen J Biomacromolecules; 2008 Nov; 9(11):3208-15. PubMed ID: 18855440 [TBL] [Abstract][Full Text] [Related]
8. Haemo- and cytocompatibility of bioresorbable homo- and copolymers prepared from 1,3-trimethylene carbonate, lactides, and epsilon-caprolactone. Yang J; Liu F; Tu S; Chen Y; Luo X; Lu Z; Wei J; Li S J Biomed Mater Res A; 2010 Aug; 94(2):396-407. PubMed ID: 20186738 [TBL] [Abstract][Full Text] [Related]
9. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
10. Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate). Mizutani M; Matsuda T J Biomed Mater Res; 2002 Jul; 61(1):53-60. PubMed ID: 12001246 [TBL] [Abstract][Full Text] [Related]
11. Crosslinking of trimethylene carbonate and D, L-lactide (co-) polymers by gamma irradiation in the presence of pentaerythritol triacrylate. Bat E; van Kooten TG; Feijen J; Grijpma DW Macromol Biosci; 2011 Jul; 11(7):952-61. PubMed ID: 21480530 [TBL] [Abstract][Full Text] [Related]
12. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid). Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481 [TBL] [Abstract][Full Text] [Related]
13. Acrylate end-capped poly(ester-carbonate) and poly(ether-ester)s for polymer-on-multielectrode array devices: synthesis, photocuring, and biocompatibility. Henry GR; Heise A; Bottai D; Formenti A; Gorio A; Di Giulio AM; Koning CE Biomacromolecules; 2008 Mar; 9(3):867-78. PubMed ID: 18257527 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable elastomeric networks: highly efficient cross-linking of poly(trimethylene carbonate) by gamma irradiation in the presence of pentaerythritol triacrylate. Bat E; Feijen J; Grijpma DW Biomacromolecules; 2010 Oct; 11(10):2692-9. PubMed ID: 20839883 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) micelles. Yang X; Cao D; Wang N; Sun L; Li L; Nie S; Wu Q; Liu X; Yi C; Gong C J Pharm Sci; 2014 Jan; 103(1):305-13. PubMed ID: 24282070 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate. Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243 [TBL] [Abstract][Full Text] [Related]
17. Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids. Bat E; van Kooten TG; Feijen J; Grijpma DW Acta Biomater; 2011 May; 7(5):1939-48. PubMed ID: 21232640 [TBL] [Abstract][Full Text] [Related]
18. Liquid, phenylazide-end-capped copolymers of epsilon-caprolactone and trimethylene carbonate: preparation, photocuring characteristics, and surface layering. Mizutani M; Arnold SC; Matsuda T Biomacromolecules; 2002; 3(4):668-75. PubMed ID: 12099809 [TBL] [Abstract][Full Text] [Related]
19. The effect of poly(trimethylene carbonate) molecular weight on macrophage behavior and enzyme adsorption and conformation. Vyner MC; Li A; Amsden BG Biomaterials; 2014 Nov; 35(33):9041-8. PubMed ID: 25109440 [TBL] [Abstract][Full Text] [Related]