These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 20845924)
1. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. Bindon KA; Smith PA; Holt H; Kennedy JA J Agric Food Chem; 2010 Oct; 58(19):10736-46. PubMed ID: 20845924 [TBL] [Abstract][Full Text] [Related]
2. Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass. Bindon KA; Smith PA; Kennedy JA J Agric Food Chem; 2010 Feb; 58(4):2520-8. PubMed ID: 20092254 [TBL] [Abstract][Full Text] [Related]
3. Tissue-specific and developmental modifications of grape cell walls influence the adsorption of proanthocyanidins. Bindon KA; Bacic A; Kennedy JA J Agric Food Chem; 2012 Sep; 60(36):9249-60. PubMed ID: 22860923 [TBL] [Abstract][Full Text] [Related]
4. Berry integrity and extraction of skin and seed proanthocyanidins during red wine fermentation. Cerpa-Calderón FK; Kennedy JA J Agric Food Chem; 2008 Oct; 56(19):9006-14. PubMed ID: 18788747 [TBL] [Abstract][Full Text] [Related]
5. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. Bindon KA; Kennedy JA J Agric Food Chem; 2011 Mar; 59(6):2696-707. PubMed ID: 21351801 [TBL] [Abstract][Full Text] [Related]
6. Detailed characterization of proanthocyanidins in skin, seeds, and wine of Shiraz and Cabernet Sauvignon wine grapes (Vitis vinifera). Hanlin RL; Kelm MA; Wilkinson KL; Downey MO J Agric Food Chem; 2011 Dec; 59(24):13265-76. PubMed ID: 22085086 [TBL] [Abstract][Full Text] [Related]
7. Heat-Dependent Desorption of Proanthocyanidins from Grape-Derived Cell Wall Material under Variable Ethanol Concentrations in Model Wine Systems. Beaver JW; Miller KV; Medina-Plaza C; Dokoozlian N; Ponangi R; Blair T; Block D; Oberholster A Molecules; 2019 Oct; 24(19):. PubMed ID: 31581447 [TBL] [Abstract][Full Text] [Related]
8. Direct method for determining seed and skin proanthocyanidin extraction into red wine. Peyrot des Gachons C; Kennedy JA J Agric Food Chem; 2003 Sep; 51(20):5877-81. PubMed ID: 13129288 [TBL] [Abstract][Full Text] [Related]
9. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151 [TBL] [Abstract][Full Text] [Related]
10. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Koyama K; Goto-Yamamoto N; Hashizume K Biosci Biotechnol Biochem; 2007 Apr; 71(4):958-65. PubMed ID: 17420579 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins. Fernández K; Kennedy JA; Agosin E J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309 [TBL] [Abstract][Full Text] [Related]
12. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components. Bindon KA; Li S; Kassara S; Smith PA J Agric Food Chem; 2016 Nov; 64(44):8406-8419. PubMed ID: 27616021 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS). González-Manzano S; Santos-Buelga C; Pérez-Alonso JJ; Rivas-Gonzalo JC; Escribano-Bailón MT J Agric Food Chem; 2006 Jun; 54(12):4326-32. PubMed ID: 16756363 [TBL] [Abstract][Full Text] [Related]
14. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications. Bautista-Ortín AB; Cano-Lechuga M; Ruiz-García Y; Gómez-Plaza E Food Chem; 2014; 152():558-65. PubMed ID: 24444975 [TBL] [Abstract][Full Text] [Related]
15. The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique. Busse-Valverde N; Gómez-Plaza E; López-Roca JM; Gil-Muñoz R; Bautista-Ortín AB J Agric Food Chem; 2011 May; 59(10):5450-5. PubMed ID: 21462997 [TBL] [Abstract][Full Text] [Related]
16. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). Chira K; Schmauch G; Saucier C; Fabre S; Teissedre PL J Agric Food Chem; 2009 Jan; 57(2):545-53. PubMed ID: 19105642 [TBL] [Abstract][Full Text] [Related]
17. Effect of extraction time on content, composition and sensory perception of proanthocyanidins in wine-like medium and during industrial fermentation of Cabernet Sauvignon. Lisjak K; Lelova Z; Žigon U; Bolta ŠV; Teissedre PL; Vanzo A J Sci Food Agric; 2020 Mar; 100(5):1887-1896. PubMed ID: 31821559 [TBL] [Abstract][Full Text] [Related]
18. Effects of the Temperature and Ethanol on the Kinetics of Proanthocyanidin Adsorption in Model Wine Systems. Beaver JW; Medina-Plaza C; Miller K; Dokoozlian N; Ponangi R; Blair T; Block D; Oberholster A J Agric Food Chem; 2020 Mar; 68(10):2891-2899. PubMed ID: 31180670 [TBL] [Abstract][Full Text] [Related]
19. Remarkable proanthocyanidin adsorption properties of monastrell pomace cell wall material highlight its potential use as an alternative fining agent in red wine production. Bautista-Ortín AB; Ruiz-García Y; Marín F; Molero N; Apolinar-Valiente R; Gómez-Plaza E J Agric Food Chem; 2015 Jan; 63(2):620-33. PubMed ID: 25529053 [TBL] [Abstract][Full Text] [Related]
20. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]