BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20846146)

  • 41. CK2-dependent phosphorylation positively regulates stress-induced activation of Msn2 in Saccharomyces cerevisiae.
    Cho BR; Hahn JS
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):695-704. PubMed ID: 28330760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth.
    Kuang Z; Pinglay S; Ji H; Boeke JD
    Elife; 2017 Sep; 6():. PubMed ID: 28949295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine.
    Tosi E; Azzolini M; Guzzo F; Zapparoli G
    J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation.
    Garmendia-Torres C; Goldbeter A; Jacquet M
    Curr Biol; 2007 Jun; 17(12):1044-9. PubMed ID: 17570669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oscillatory behavior of the nuclear localization of the transcription factors Msn2 and Msn4 in response to stress in yeast.
    Jacquet M; Renault G; Lallet S; De Mey J; Goldbeter A
    ScientificWorldJournal; 2003 Jul; 3():609-12. PubMed ID: 12858011
    [No Abstract]   [Full Text] [Related]  

  • 46. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation--via a newly identified Glc7/Bud14 type I protein phosphatase module--and TFIID promoter distribution.
    Lenssen E; James N; Pedruzzi I; Dubouloz F; Cameroni E; Bisig R; Maillet L; Werner M; Roosen J; Petrovic K; Winderickx J; Collart MA; De Virgilio C
    Mol Cell Biol; 2005 Jan; 25(1):488-98. PubMed ID: 15601868
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Specific serine residues of Msn2/4 are responsible for regulation of alcohol fermentation rates and ethanol resistance.
    Vamvakas SS; Kapolos J; Farmakis L; Genneos F; Damianaki ME; Chouli X; Vardakou A; Liosi S; Stavropoulou E; Leivaditi E; Fragki M; Labrakou E; Gashi EG; Demoli D
    Biotechnol Prog; 2019 Mar; 35(2):e2759. PubMed ID: 30507007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anthocyanins and heart health.
    Mazza GJ
    Ann Ist Super Sanita; 2007; 43(4):369-74. PubMed ID: 18209270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners.
    Sadeh A; Movshovich N; Volokh M; Gheber L; Aharoni A
    Mol Biol Cell; 2011 Sep; 22(17):3127-38. PubMed ID: 21757539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PKA-Msn2/4-Shy1 cascade controls inhibition of proline utilization under wine fermentation models.
    Nishimura A; Tanahashi R; Nakazawa H; Oi T; Mima M; Takagi H
    J Biosci Bioeng; 2023 Dec; 136(6):438-442. PubMed ID: 37940488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.
    Fabrizio P; Pletcher SD; Minois N; Vaupel JW; Longo VD
    FEBS Lett; 2004 Jan; 557(1-3):136-42. PubMed ID: 14741356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Yeast transcription factor Msn2 binds to G4 DNA.
    Duy DL; Kim N
    Nucleic Acids Res; 2023 Oct; 51(18):9643-9657. PubMed ID: 37615577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antioxidant Activity of Selected Polyphenolics in Yeast Cells: The Case Study of Montenegrin Merlot Wine.
    Đorđević NO; Todorović N; Novaković IT; Pezo LL; Pejin B; Maraš V; Tešević VV; Pajović SB
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30087228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimized Synthesis and Antioxidant Activity of Anthocyanins Delphinidin-3-
    Wu G; Zhao Z; Hu J; Li Y; Sun J; Bai W
    J Agric Food Chem; 2024 Jul; 72(26):15005-15012. PubMed ID: 38888327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae.
    Domitrovic T; Fernandes CM; Boy-Marcotte E; Kurtenbach E
    FEBS Lett; 2006 Nov; 580(26):6033-8. PubMed ID: 17055490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeast cell fate control by temporal redundancy modulation of transcription factor paralogs.
    Wu Y; Wu J; Deng M; Lin Y
    Nat Commun; 2021 May; 12(1):3145. PubMed ID: 34035307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2.
    Jiang Y; AkhavanAghdam Z; Tsimring LS; Hao N
    J Biol Chem; 2017 Jul; 292(30):12366-12372. PubMed ID: 28637875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic control of gene regulatory logic by seemingly redundant transcription factors.
    AkhavanAghdam Z; Sinha J; Tabbaa OP; Hao N
    Elife; 2016 Sep; 5():. PubMed ID: 27690227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Genetic Screen for Saccharomyces cerevisiae Mutants That Fail to Enter Quiescence.
    Li L; Miles S; Breeden LL
    G3 (Bethesda); 2015 Jun; 5(8):1783-95. PubMed ID: 26068574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.