BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20846282)

  • 21. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model sensitivity and use of the comparative finite element method in mammalian jaw mechanics: mandible performance in the gray wolf.
    Tseng ZJ; McNitt-Gray JL; Flashner H; Wang X; Enciso R
    PLoS One; 2011 Apr; 6(4):e19171. PubMed ID: 21559475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the distribution of strains with the distribution of bone tissue in a human mandible: a finite element study.
    Gröning F; Fagan M; O'higgins P
    Anat Rec (Hoboken); 2013 Jan; 296(1):9-18. PubMed ID: 22976999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probabilistic analysis of peri-implant strain predictions as influenced by uncertainties in bone properties and occlusal forces.
    Petrie CS; Williams JL
    Clin Oral Implants Res; 2007 Oct; 18(5):611-9. PubMed ID: 17590159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. II. Variables affecting the predictive behavior of a finite element model of a human mandible.
    Al-Sukhun J; Lindqvist C; Helenius M
    J Biomed Mater Res A; 2007 Jan; 80(1):247-56. PubMed ID: 17078047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models.
    Apicella D; Aversa R; Ferro F; Ianniello D; Perillo L; Apicella A
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):150-63. PubMed ID: 20119941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional finite element stress analysis of the dentate human mandible.
    Korioth TW; Romilly DP; Hannam AG
    Am J Phys Anthropol; 1992 May; 88(1):69-96. PubMed ID: 1510115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing mechanical function of the zygomatic region in macaques: validation and sensitivity testing of finite element models.
    Kupczik K; Dobson CA; Fagan MJ; Crompton RH; Oxnard CE; O'Higgins P
    J Anat; 2007 Jan; 210(1):41-53. PubMed ID: 17229282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validating a voxel-based finite element model of a human mandible using digital speckle pattern interferometry.
    Gröning F; Liu J; Fagan MJ; O'Higgins P
    J Biomech; 2009 Jun; 42(9):1224-9. PubMed ID: 19394021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional finite element analysis of mechanical stress in symphyseal fractured human mandible reduced with miniplates during mastication.
    Wang H; Ji B; Jiang W; Liu L; Zhang P; Tang W; Tian W; Fan Y
    J Oral Maxillofac Surg; 2010 Jul; 68(7):1585-92. PubMed ID: 20434254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. I. Mathematical validation and experimental verification.
    Al-Sukhun J; Kelleway J; Helenius M
    J Biomed Mater Res A; 2007 Jan; 80(1):234-46. PubMed ID: 17078048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans.
    Therrien F; Quinney A; Tanaka K; Zelenitsky DK
    J Exp Biol; 2016 Dec; 219(Pt 23):3738-3749. PubMed ID: 27634400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT.
    Liao SH; Tong RF; Dong JX
    Comput Med Imaging Graph; 2008 Jan; 32(1):53-60. PubMed ID: 17951028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.
    Toro-Ibacache V; O'Higgins P
    Anat Rec (Hoboken); 2016 Jul; 299(7):828-39. PubMed ID: 27111484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis.
    Lei T; Xie L; Tu W; Chen Y; Tan Y
    J Trauma Acute Care Surg; 2012 Oct; 73(4):902-7. PubMed ID: 22902731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro strain measurements in the condylar process of the human mandible.
    Throckmorton GS; Dechow PC
    Arch Oral Biol; 1994 Oct; 39(10):853-67. PubMed ID: 7741655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Three dimensional finite element analysis of biomechanical distribution of dental implants with immediate loading].
    Han XL; Liu ZW; Li YT
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2011 Apr; 29(2):121-4. PubMed ID: 21598477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.