These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 20846418)
1. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy. Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418 [TBL] [Abstract][Full Text] [Related]
2. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703 [TBL] [Abstract][Full Text] [Related]
3. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
4. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
5. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839 [TBL] [Abstract][Full Text] [Related]
6. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
7. Application of hybrid SSVEP + P300 brain computer interface to control avatar movement in mobile virtual reality gaming environment. Kapgate DD Behav Brain Res; 2024 Aug; 472():115154. PubMed ID: 39038519 [TBL] [Abstract][Full Text] [Related]
8. Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body. Kübler A; Neumann N Prog Brain Res; 2005; 150():513-25. PubMed ID: 16186045 [TBL] [Abstract][Full Text] [Related]
9. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513 [TBL] [Abstract][Full Text] [Related]
10. Real-Time Navigation in Google Street View Yang L; Van Hulle MM Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744 [TBL] [Abstract][Full Text] [Related]
11. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
12. Individually adapted imagery improves brain-computer interface performance in end-users with disability. Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718 [TBL] [Abstract][Full Text] [Related]
15. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training. Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081 [TBL] [Abstract][Full Text] [Related]
16. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Neuper C; Müller GR; Kübler A; Birbaumer N; Pfurtscheller G Clin Neurophysiol; 2003 Mar; 114(3):399-409. PubMed ID: 12705420 [TBL] [Abstract][Full Text] [Related]
17. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene. Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412 [TBL] [Abstract][Full Text] [Related]
18. Long Multi-Stage Training for a Motor-Impaired User in a BCI Competition. Turi F; Clerc M; Papadopoulo T Front Hum Neurosci; 2021; 15():647908. PubMed ID: 33841120 [TBL] [Abstract][Full Text] [Related]
19. Brain-computer interface research at the Wadsworth Center. Wolpaw JR; McFarland DJ; Vaughan TM IEEE Trans Rehabil Eng; 2000 Jun; 8(2):222-6. PubMed ID: 10896194 [TBL] [Abstract][Full Text] [Related]
20. EEG generation mechanism of lower limb active movement intention and its virtual reality induction enhancement: a preliminary study. Dong R; Zhang X; Li H; Masengo G; Zhu A; Shi X; He C Front Neurosci; 2023; 17():1305850. PubMed ID: 38352938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]