These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 20846434)
1. Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Höfer P; Choi YJ; Osborne MJ; Miguez CB; Vermette P; Groleau D Microb Cell Fact; 2010 Sep; 9():70. PubMed ID: 20846434 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Orita I; Nishikawa K; Nakamura S; Fukui T Appl Microbiol Biotechnol; 2014 Apr; 98(8):3715-25. PubMed ID: 24430207 [TBL] [Abstract][Full Text] [Related]
3. Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory. Höfer P; Vermette P; Groleau D Bioeng Bugs; 2011; 2(2):71-9. PubMed ID: 21636993 [TBL] [Abstract][Full Text] [Related]
4. Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. Jin H; Nikolau BJ J Bacteriol; 2012 Oct; 194(20):5522-9. PubMed ID: 22865850 [TBL] [Abstract][Full Text] [Related]
5. Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1. Ren Q; de Roo G; Witholt B; Zinn M; Thöny-Meyer L Microb Cell Fact; 2009 Nov; 8():60. PubMed ID: 19925642 [TBL] [Abstract][Full Text] [Related]
6. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Yang YM; Chen WJ; Yang J; Zhou YM; Hu B; Zhang M; Zhu LP; Wang GY; Yang S Microb Cell Fact; 2017 Oct; 16(1):179. PubMed ID: 29084554 [TBL] [Abstract][Full Text] [Related]
7. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565 [TBL] [Abstract][Full Text] [Related]
8. Production of 2-Hydroxyisobutyric Acid from Methanol by Methylobacterium extorquens AM1 Expressing (R)-3-Hydroxybutyryl Coenzyme A-Isomerizing Enzymes. Rohde MT; Tischer S; Harms H; Rohwerder T Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836853 [TBL] [Abstract][Full Text] [Related]
9. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
10. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases Phac1 and PhaC2. Hein S; Paletta JR; Steinbüchel A Appl Microbiol Biotechnol; 2002 Feb; 58(2):229-36. PubMed ID: 11878309 [TBL] [Abstract][Full Text] [Related]
11. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242 [TBL] [Abstract][Full Text] [Related]
12. Breeding of Methanol-Tolerant Methylobacterium extorquens AM1 by Atmospheric and Room Temperature Plasma Mutagenesis Combined With Adaptive Laboratory Evolution. Cui LY; Wang SS; Guan CG; Liang WF; Xue ZL; Zhang C; Xing XH Biotechnol J; 2018 Jun; 13(6):e1700679. PubMed ID: 29729127 [TBL] [Abstract][Full Text] [Related]
13. Heterologous extracellular production of enterocin P from Enterococcus faecium P13 in the methylotrophic bacterium Methylobacterium extorquens. Gutiérrez J; Bourque D; Criado R; Choi YJ; Cintas LM; Hernández PE; Míguez CB FEMS Microbiol Lett; 2005 Jul; 248(1):125-31. PubMed ID: 15950402 [TBL] [Abstract][Full Text] [Related]
14. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425 [TBL] [Abstract][Full Text] [Related]
15. Sodium formate redirects carbon flux and enhances heterologous mevalonate production in Methylobacterium extorquens AM1. Cui LY; Yang J; Liang WF; Yang S; Zhang C; Xing XH Biotechnol J; 2023 Feb; 18(2):e2200402. PubMed ID: 36424513 [TBL] [Abstract][Full Text] [Related]
16. Expression of toxic genes in Methylorubrum extorquens with a tightly repressed, cumate-inducible promoter. Pöschel L; Gehr E; Jordan P; Sonntag F; Buchhaupt M Antonie Van Leeuwenhoek; 2023 Dec; 116(12):1285-1294. PubMed ID: 37751033 [TBL] [Abstract][Full Text] [Related]
17. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Sonntag F; Kroner C; Lubuta P; Peyraud R; Horst A; Buchhaupt M; Schrader J Metab Eng; 2015 Nov; 32():82-94. PubMed ID: 26369439 [TBL] [Abstract][Full Text] [Related]
18. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol. Cui J; Good NM; Hu B; Yang J; Wang Q; Sadilek M; Yang S PLoS One; 2016; 11(4):e0154043. PubMed ID: 27116459 [TBL] [Abstract][Full Text] [Related]
19. Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation. Bélanger L; Figueira MM; Bourque D; Morel L; Béland M; Laramée L; Groleau D; Míguez CB FEMS Microbiol Lett; 2004 Feb; 231(2):197-204. PubMed ID: 14987765 [TBL] [Abstract][Full Text] [Related]