These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20846437)

  • 1. Parallel multiplicity and error discovery rate (EDR) in microarray experiments.
    Xu WW; Carter CJ
    BMC Bioinformatics; 2010 Sep; 11():465. PubMed ID: 20846437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies.
    Shi L; Jones WD; Jensen RV; Harris SC; Perkins RG; Goodsaid FM; Guo L; Croner LJ; Boysen C; Fang H; Qian F; Amur S; Bao W; Barbacioru CC; Bertholet V; Cao XM; Chu TM; Collins PJ; Fan XH; Frueh FW; Fuscoe JC; Guo X; Han J; Herman D; Hong H; Kawasaki ES; Li QZ; Luo Y; Ma Y; Mei N; Peterson RL; Puri RK; Shippy R; Su Z; Sun YA; Sun H; Thorn B; Turpaz Y; Wang C; Wang SJ; Warrington JA; Willey JC; Wu J; Xie Q; Zhang L; Zhang L; Zhong S; Wolfinger RD; Tong W
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S10. PubMed ID: 18793455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying differentially expressed genes using false discovery rate controlling procedures.
    Reiner A; Yekutieli D; Benjamini Y
    Bioinformatics; 2003 Feb; 19(3):368-75. PubMed ID: 12584122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased power of microarray analysis by use of an algorithm based on a multivariate procedure.
    Krohn K; Eszlinger M; Paschke R; Roeder I; Schuster E
    Bioinformatics; 2005 Sep; 21(17):3530-4. PubMed ID: 15998661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtering for increased power for microarray data analysis.
    Hackstadt AJ; Hess AM
    BMC Bioinformatics; 2009 Jan; 10():11. PubMed ID: 19133141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A power law global error model for the identification of differentially expressed genes in microarray data.
    Pavelka N; Pelizzola M; Vizzardelli C; Capozzoli M; Splendiani A; Granucci F; Ricciardi-Castagnoli P
    BMC Bioinformatics; 2004 Dec; 5():203. PubMed ID: 15606915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach.
    Li D; Le Pape MA; Parikh NI; Chen WX; Dye TD
    PLoS One; 2013; 8(11):e80099. PubMed ID: 24312198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
    Xu X; Zhang Y; Williams J; Antoniou E; McCombie WR; Wu S; Zhu W; Davidson NO; Denoya P; Li E
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S1. PubMed ID: 23902433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of filtering by Present call on analysis of microarray experiments.
    McClintick JN; Edenberg HJ
    BMC Bioinformatics; 2006 Jan; 7():49. PubMed ID: 16448562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating p-values in small microarray experiments.
    Yang H; Churchill G
    Bioinformatics; 2007 Jan; 23(1):38-43. PubMed ID: 17077100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
    Sartor MA; Tomlinson CR; Wesselkamper SC; Sivaganesan S; Leikauf GD; Medvedovic M
    BMC Bioinformatics; 2006 Dec; 7():538. PubMed ID: 17177995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidimensional local false discovery rate for microarray studies.
    Ploner A; Calza S; Gusnanto A; Pawitan Y
    Bioinformatics; 2006 Mar; 22(5):556-65. PubMed ID: 16368770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplicity issues in microarray experiments.
    Bretz F; Landgrebe J; Brunner E
    Methods Inf Med; 2005; 44(3):431-7. PubMed ID: 16113769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Multiple comparison procedures: principles, limits. Applications to microarray phenotype-genotype analysis].
    Dalmasso C; Broët P; Moreau T
    Rev Epidemiol Sante Publique; 2004 Dec; 52(6):523-37. PubMed ID: 15741915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized likelihood ratio test to identify differentially expressed genes from microarray data.
    Wang S; Ethier S
    Bioinformatics; 2004 Jan; 20(1):100-4. PubMed ID: 14693815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonparametric methods for identifying differentially expressed genes in microarray data.
    Troyanskaya OG; Garber ME; Brown PO; Botstein D; Altman RB
    Bioinformatics; 2002 Nov; 18(11):1454-61. PubMed ID: 12424116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosetta error model for gene expression analysis.
    Weng L; Dai H; Zhan Y; He Y; Stepaniants SB; Bassett DE
    Bioinformatics; 2006 May; 22(9):1111-21. PubMed ID: 16522673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
    Zhao H; Chan KL; Cheng LM; Yan H
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.