These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 20847266)
21. An early lunar core dynamo driven by thermochemical mantle convection. Stegman DR; Jellinek AM; Zatman SA; Baumgardner JR; Richards MA Nature; 2003 Jan; 421(6919):143-6. PubMed ID: 12520295 [TBL] [Abstract][Full Text] [Related]
22. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Mustard JF; Murchie SL; Pelkey SM; Ehlmann BL; Milliken RE; Grant JA; Bibring JP; Poulet F; Bishop J; Dobrea EN; Roach L; Seelos F; Arvidson RE; Wiseman S; Green R; Hash C; Humm D; Malaret E; McGovern JA; Seelos K; Clancy T; Clark R; Marais DD; Izenberg N; Knudson A; Langevin Y; Martin T; McGuire P; Morris R; Robinson M; Roush T; Smith M; Swayze G; Taylor H; Titus T; Wolff M Nature; 2008 Jul; 454(7202):305-9. PubMed ID: 18633411 [TBL] [Abstract][Full Text] [Related]
23. Thermal conductivity of lunar and terrestrial igneous rocks in their melting range. Murase T; McBirney AR Science; 1970 Oct; 170(3954):165-7. PubMed ID: 17833498 [TBL] [Abstract][Full Text] [Related]
24. Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts. Sedaghatpour F; Jacobsen SB Proc Natl Acad Sci U S A; 2019 Jan; 116(1):73-78. PubMed ID: 30559183 [TBL] [Abstract][Full Text] [Related]
25. Direct evidence of surface exposed water ice in the lunar polar regions. Li S; Lucey PG; Milliken RE; Hayne PO; Fisher E; Williams JP; Hurley DM; Elphic RC Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8907-8912. PubMed ID: 30126996 [TBL] [Abstract][Full Text] [Related]
27. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Touboul M; Kleine T; Bourdon B; Palme H; Wieler R Nature; 2007 Dec; 450(7173):1206-9. PubMed ID: 18097403 [TBL] [Abstract][Full Text] [Related]
28. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Day JM; Pearson DG; Taylor LA Science; 2007 Jan; 315(5809):217-9. PubMed ID: 17218521 [TBL] [Abstract][Full Text] [Related]
29. Compositional Variations in the Vicinity of the Lunar Crust-Mantle Interface From Moon Mineralogy Mapper Data. Martinot M; Flahaut J; Besse S; Quantin-Nataf C; van Westrenen W J Geophys Res Planets; 2018 Dec; 123(12):3220-3237. PubMed ID: 31007994 [TBL] [Abstract][Full Text] [Related]
30. The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information. Bender PL; Currie DG; Poultney SK; Alley CO; Dicke RH; Wilkinson DT; Eckhardt DH; Faller JE; Kaula WM; Mulholland JD; Plotkin HH; Silverberg EC; Williams JG Science; 1973 Oct; 182(4109):229-38. PubMed ID: 17749298 [TBL] [Abstract][Full Text] [Related]
31. Characteristics of the lunar samples returned by the Chang'E-5 mission. Li C; Hu H; Yang MF; Pei ZY; Zhou Q; Ren X; Liu B; Liu D; Zeng X; Zhang G; Zhang H; Liu J; Wang Q; Deng X; Xiao C; Yao Y; Xue D; Zuo W; Su Y; Wen W; Ouyang Z Natl Sci Rev; 2022 Feb; 9(2):nwab188. PubMed ID: 35382442 [TBL] [Abstract][Full Text] [Related]
32. Lunar impact basins and crustal heterogeneity: new Western limb and far side data from galileo. Belton MJ; Head JW; Pieters CM; Greeley R; McEwen AS; Neukum G; Klaasen KP; Anger CD; Carr MH; Chapman CR; Davies ME; Fanale FP; Gierasch PJ; Greenberg R; Ingersoll AP; Johnson T; Paczkowski B; Pilcher CB; Veverka J Science; 1992 Jan; 255(5044):570-6. PubMed ID: 17792379 [TBL] [Abstract][Full Text] [Related]
33. Compositional and spectrochemical analyses of Cr-spinels in the Sittampundi Anorthosite Complex, Southern India: Implications for remote observation of spinels on the Moon. Thesniya PM; Saranya R; Rajesh VJ Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119677. PubMed ID: 33819749 [TBL] [Abstract][Full Text] [Related]
34. Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang'E-5 samples. Liu D; Wang X; Liu J; Liu B; Ren X; Chen Y; Chen Z; Zhang H; Zhang G; Zhou Q; Zhang Z; Fu Q; Li C Nat Commun; 2022 Oct; 13(1):5965. PubMed ID: 36216953 [TBL] [Abstract][Full Text] [Related]
36. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment. Taylor GJ; Wieczorek MA Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130242. PubMed ID: 25114309 [TBL] [Abstract][Full Text] [Related]
37. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Halliday AN Nature; 2004 Feb; 427(6974):505-9. PubMed ID: 14765187 [TBL] [Abstract][Full Text] [Related]
38. The Effects of Terrain Properties Upon the Small Crater Population Distribution at Giordano Bruno: Implications for Lunar Chronology. Williams JP; Pathare AV; Costello ES; Gallinger CL; Hayne PO; Ghent RR; Paige DA; Siegler MA; Russell PS; Elder CM J Geophys Res Planets; 2022 May; 127(5):e2021JE007131. PubMed ID: 35865504 [TBL] [Abstract][Full Text] [Related]
39. Clementine observations of the aristarchus region of the moon. McEwen AS; Robinson MS; Eliason EM; Lucey PG; Duxbury TC; Spudis PD Science; 1994 Dec; 266(5192):1858-62. PubMed ID: 17737082 [TBL] [Abstract][Full Text] [Related]
40. Chemical Composition of the Lunar Surface in a Terra Region near the Crater Tycho. Patterson JH; Turkevich AL; Franzgrote EJ; Economou TE; Sowinski KP Science; 1970 May; 168(3933):825-8. PubMed ID: 17768913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]