These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20848032)

  • 1. Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B.
    Pedras MS; Yaya EE; Hossain S
    Org Biomol Chem; 2010 Nov; 8(22):5150-8. PubMed ID: 20848032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic responses of Thellungiella halophila/salsuginea to biotic and abiotic stresses: metabolite profiles and quantitative analyses.
    Pedras MS; Zheng QA
    Phytochemistry; 2010 Apr; 71(5-6):581-9. PubMed ID: 20122704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin.
    Pedras MS; Adio AM
    Phytochemistry; 2008 Feb; 69(4):889-93. PubMed ID: 18078965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembling the biosynthetic puzzle of crucifer metabolites: indole-3-acetaldoxime is incorporated efficiently into phytoalexins but glucobrassicin is not.
    Pedras MS; Montaut S; Xu Y; Khan AQ; Loukaci A
    Chem Commun (Camb); 2001 Sep; (17):1572-3. PubMed ID: 12240387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical dimerization of wasalexins in UV-irradiated Thellungiellahalophila and in vitro generates unique cruciferous phytoalexins.
    Pedras MS; Zheng QA; Schatte G; Adio AM
    Phytochemistry; 2009 Dec; 70(17-18):2010-6. PubMed ID: 19818973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds.
    Pedras MSC; Okinyo-Owiti DP; Thoms K; Adio AM
    Phytochemistry; 2009 Jun; 70(9):1129-1138. PubMed ID: 19560792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds.
    Pedras MSC; To QH
    Org Biomol Chem; 2018 May; 16(19):3625-3638. PubMed ID: 29708249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cruciferous phytoalexins brassinin and cyclobrassinin are intermediates in the biosynthesis of brassilexin.
    Pedras MS; Loukaci A; Okanga FI
    Bioorg Med Chem Lett; 1998 Nov; 8(21):3037-8. PubMed ID: 9873671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge.
    Mucha S; Walther D; Müller TM; Hincha DK; Glawischnig E
    BMC Plant Biol; 2015 Jun; 15():137. PubMed ID: 26063239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of the crucifer phytoalexins wasalexin A and B in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Suchý M
    Org Biomol Chem; 2006 Sep; 4(18):3526-35. PubMed ID: 17036150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of cabbage phytoalexins from indole glucosinolate.
    Klein AP; Sattely ES
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1910-1915. PubMed ID: 28154137
    [No Abstract]   [Full Text] [Related]  

  • 13. Brassinin oxidase mediated transformation of the phytoalexin brassinin: structure of the elusive co-product, deuterium isotope effect and stereoselectivity.
    Pedras MS; Minic Z; Sarma-Mamillapalle VK
    Bioorg Med Chem; 2011 Feb; 19(4):1390-9. PubMed ID: 21292494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. En route to erucalexin: a unique rearrangement in the crucifer phytoalexin biosynthetic pathway.
    Pedras MS; Okinyo DP
    Chem Commun (Camb); 2006 May; (17):1848-50. PubMed ID: 16622504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of stable isotope-labeled nasturlexins and potential precursors to probe biosynthetic pathways of cruciferous phytoalexins.
    Pedras MSC; To QH
    J Labelled Comp Radiopharm; 2018 Feb; 61(2):94-106. PubMed ID: 29231250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.
    Pedras MS; Hossain S
    Phytochemistry; 2011 Dec; 72(18):2308-16. PubMed ID: 21920565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity.
    Bednarek P
    Chembiochem; 2012 Sep; 13(13):1846-59. PubMed ID: 22807086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis.
    Klein AP; Sattely ES
    Nat Chem Biol; 2015 Nov; 11(11):837-9. PubMed ID: 26389737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins.
    Pedras MS; Okinyo DP
    Org Biomol Chem; 2008 Jan; 6(1):51-4. PubMed ID: 18075646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detoxification of the cruciferous phytoalexin brassinin in Sclerotinia sclerotiorum requires an inducible glucosyltransferase.
    Pedras MS; Ahiahonu PW; Hossain M
    Phytochemistry; 2004 Oct; 65(19):2685-94. PubMed ID: 15464156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.