These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chemoenzymatic synthesis of CD52 glycoproteins carrying native N-glycans. Li H; Singh S; Zeng Y; Song H; Wang LX Bioorg Med Chem Lett; 2005 Feb; 15(4):895-8. PubMed ID: 15686882 [TBL] [Abstract][Full Text] [Related]
3. The sperm agglutination antigen-1 (SAGA-1) glycoforms of CD52 are O-glycosylated. Parry S; Wong NK; Easton RL; Panico M; Haslam SM; Morris HR; Anderson P; Klotz KL; Herr JC; Diekman AB; Dell A Glycobiology; 2007 Oct; 17(10):1120-6. PubMed ID: 17640971 [TBL] [Abstract][Full Text] [Related]
4. Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens. Zong G; Li C; Wang LX Methods Mol Biol; 2020; 2103():249-262. PubMed ID: 31879931 [TBL] [Abstract][Full Text] [Related]
5. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes. Ermini L; Secciani F; La Sala GB; Sabatini L; Fineschi D; Hale G; Rosati F Biochem Biophys Res Commun; 2005 Dec; 338(2):1275-83. PubMed ID: 16266689 [TBL] [Abstract][Full Text] [Related]
6. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Brockhausen I; Dowler T; Paulsen H Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017 [TBL] [Abstract][Full Text] [Related]
7. Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues. Wu Z; Guo X; Gu G; Guo Z Org Lett; 2013 Nov; 15(22):5906-8. PubMed ID: 24147914 [TBL] [Abstract][Full Text] [Related]
8. Male-specific modification of human CD52. Schröter S; Derr P; Conradt HS; Nimtz M; Hale G; Kirchhoff C J Biol Chem; 1999 Oct; 274(42):29862-73. PubMed ID: 10514467 [TBL] [Abstract][Full Text] [Related]
9. Solid-phase synthesis of CD52 glycopeptide and an efficient route to Asn-core pentasaccharide conjugate. Guo ZW; Nakahara Y; Nakahara Y; Ogawa T Bioorg Med Chem; 1997 Oct; 5(10):1917-24. PubMed ID: 9370036 [TBL] [Abstract][Full Text] [Related]
10. Introducing N-glycans into natural products through a chemoenzymatic approach. Huang W; Ochiai H; Zhang X; Wang LX Carbohydr Res; 2008 Nov; 343(17):2903-13. PubMed ID: 18805520 [TBL] [Abstract][Full Text] [Related]
11. Total synthesis of a glycosylphosphatidylinositol anchor of the human lymphocyte CD52 antigen. Burgula S; Swarts BM; Guo Z Chemistry; 2012 Jan; 18(4):1194-201. PubMed ID: 22189835 [TBL] [Abstract][Full Text] [Related]
12. Chemoselective ligation applied to the synthesis of a biantennary N-linked glycoform of CD52. Pratt MR; Bertozzi CR J Am Chem Soc; 2003 May; 125(20):6149-59. PubMed ID: 12785846 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and CD structural studies of CD52 peptides and glycopeptides. Swarts BM; Chang YC; Hu H; Guo Z Carbohydr Res; 2008 Nov; 343(17):2894-902. PubMed ID: 18789797 [TBL] [Abstract][Full Text] [Related]
14. Endo-F3 Glycosynthase Mutants Enable Chemoenzymatic Synthesis of Core-fucosylated Triantennary Complex Type Glycopeptides and Glycoproteins. Giddens JP; Lomino JV; Amin MN; Wang LX J Biol Chem; 2016 Apr; 291(17):9356-70. PubMed ID: 26966183 [TBL] [Abstract][Full Text] [Related]
15. Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans. Huang W; Li C; Li B; Umekawa M; Yamamoto K; Zhang X; Wang LX J Am Chem Soc; 2009 Feb; 131(6):2214-23. PubMed ID: 19199609 [TBL] [Abstract][Full Text] [Related]
16. Site-specific analysis of von Willebrand factor O-glycosylation. Solecka BA; Weise C; Laffan MA; Kannicht C J Thromb Haemost; 2016 Apr; 14(4):733-46. PubMed ID: 26784534 [TBL] [Abstract][Full Text] [Related]
17. Site-Selective Chemoenzymatic Glycosylation of an HIV-1 Polypeptide Antigen with Two Distinct N-Glycans via an Orthogonal Protecting Group Strategy. Toonstra C; Amin MN; Wang LX J Org Chem; 2016 Aug; 81(15):6176-85. PubMed ID: 27380452 [TBL] [Abstract][Full Text] [Related]