BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 20848033)

  • 1. Expeditious chemoenzymatic synthesis of CD52 glycopeptide antigens.
    Huang W; Zhang X; Ju T; Cummings RD; Wang LX
    Org Biomol Chem; 2010 Nov; 8(22):5224-33. PubMed ID: 20848033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic synthesis of CD52 glycoproteins carrying native N-glycans.
    Li H; Singh S; Zeng Y; Song H; Wang LX
    Bioorg Med Chem Lett; 2005 Feb; 15(4):895-8. PubMed ID: 15686882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sperm agglutination antigen-1 (SAGA-1) glycoforms of CD52 are O-glycosylated.
    Parry S; Wong NK; Easton RL; Panico M; Haslam SM; Morris HR; Anderson P; Klotz KL; Herr JC; Diekman AB; Dell A
    Glycobiology; 2007 Oct; 17(10):1120-6. PubMed ID: 17640971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens.
    Zong G; Li C; Wang LX
    Methods Mol Biol; 2020; 2103():249-262. PubMed ID: 31879931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes.
    Ermini L; Secciani F; La Sala GB; Sabatini L; Fineschi D; Hale G; Rosati F
    Biochem Biophys Res Commun; 2005 Dec; 338(2):1275-83. PubMed ID: 16266689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2.
    Brockhausen I; Dowler T; Paulsen H
    Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues.
    Wu Z; Guo X; Gu G; Guo Z
    Org Lett; 2013 Nov; 15(22):5906-8. PubMed ID: 24147914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Male-specific modification of human CD52.
    Schröter S; Derr P; Conradt HS; Nimtz M; Hale G; Kirchhoff C
    J Biol Chem; 1999 Oct; 274(42):29862-73. PubMed ID: 10514467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase synthesis of CD52 glycopeptide and an efficient route to Asn-core pentasaccharide conjugate.
    Guo ZW; Nakahara Y; Nakahara Y; Ogawa T
    Bioorg Med Chem; 1997 Oct; 5(10):1917-24. PubMed ID: 9370036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing N-glycans into natural products through a chemoenzymatic approach.
    Huang W; Ochiai H; Zhang X; Wang LX
    Carbohydr Res; 2008 Nov; 343(17):2903-13. PubMed ID: 18805520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total synthesis of a glycosylphosphatidylinositol anchor of the human lymphocyte CD52 antigen.
    Burgula S; Swarts BM; Guo Z
    Chemistry; 2012 Jan; 18(4):1194-201. PubMed ID: 22189835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselective ligation applied to the synthesis of a biantennary N-linked glycoform of CD52.
    Pratt MR; Bertozzi CR
    J Am Chem Soc; 2003 May; 125(20):6149-59. PubMed ID: 12785846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and CD structural studies of CD52 peptides and glycopeptides.
    Swarts BM; Chang YC; Hu H; Guo Z
    Carbohydr Res; 2008 Nov; 343(17):2894-902. PubMed ID: 18789797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endo-F3 Glycosynthase Mutants Enable Chemoenzymatic Synthesis of Core-fucosylated Triantennary Complex Type Glycopeptides and Glycoproteins.
    Giddens JP; Lomino JV; Amin MN; Wang LX
    J Biol Chem; 2016 Apr; 291(17):9356-70. PubMed ID: 26966183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans.
    Huang W; Li C; Li B; Umekawa M; Yamamoto K; Zhang X; Wang LX
    J Am Chem Soc; 2009 Feb; 131(6):2214-23. PubMed ID: 19199609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific analysis of von Willebrand factor O-glycosylation.
    Solecka BA; Weise C; Laffan MA; Kannicht C
    J Thromb Haemost; 2016 Apr; 14(4):733-46. PubMed ID: 26784534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-Selective Chemoenzymatic Glycosylation of an HIV-1 Polypeptide Antigen with Two Distinct N-Glycans via an Orthogonal Protecting Group Strategy.
    Toonstra C; Amin MN; Wang LX
    J Org Chem; 2016 Aug; 81(15):6176-85. PubMed ID: 27380452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of CD52.
    Treumann A; Lifely MR; Schneider P; Ferguson MA
    J Biol Chem; 1995 Mar; 270(11):6088-99. PubMed ID: 7890742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-step enzymatic glycosylation of polypeptides with complex N-glycans.
    Lomino JV; Naegeli A; Orwenyo J; Amin MN; Aebi M; Wang LX
    Bioorg Med Chem; 2013 Apr; 21(8):2262-2270. PubMed ID: 23477942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycan Remodeling of Human Erythropoietin (EPO) Through Combined Mammalian Cell Engineering and Chemoenzymatic Transglycosylation.
    Yang Q; An Y; Zhu S; Zhang R; Loke CM; Cipollo JF; Wang LX
    ACS Chem Biol; 2017 Jun; 12(6):1665-1673. PubMed ID: 28452462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.