BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20848047)

  • 1. A liposome-based energy conversion system for accelerating the multi-enzyme reactions.
    Matsumoto R; Kakuta M; Sugiyama T; Goto Y; Sakai H; Tokita Y; Hatazawa T; Tsujimura S; Shirai O; Kano K
    Phys Chem Chem Phys; 2010 Nov; 12(42):13904-6. PubMed ID: 20848047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes.
    Pandey PC
    Anal Biochem; 1994 Sep; 221(2):392-6. PubMed ID: 7810883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development and evaluation of a conducting matrix for the electrochemical regeneration of the immobilised co-factor NAD(H) under continuous flow.
    Ngamsom B; Hickey AM; Greenway GM; Littlechild JA; McCreedy T; Watts P; Wiles C
    Org Biomol Chem; 2010 May; 8(10):2419-24. PubMed ID: 20448901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis.
    Mavré F; Bontemps M; Ammar-Merah S; Marchal D; Limoges B
    Anal Chem; 2007 Jan; 79(1):187-94. PubMed ID: 17194138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiometric method for substrate analysis using immobilized NAD + -dependent oxidoreductase enzymes.
    Chen AK; Liu CC; Schiller JG
    Biotechnol Bioeng; 1979 Nov; 21(11):1905-15. PubMed ID: 226201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies.
    Winberg JO; Brendskag MK; Sylte I; Lindstad RI; McKinley-McKee JS
    J Mol Biol; 1999 Nov; 294(2):601-16. PubMed ID: 10610783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.
    Yoshimoto M; Sato M; Yoshimoto N; Nakao K
    Biotechnol Prog; 2008; 24(3):576-82. PubMed ID: 18335956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.
    Umasankar Y; Adhikari BR; Chen A
    Bioelectrochemistry; 2017 Dec; 118():83-90. PubMed ID: 28772201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of monodispersed microfloccules of TiO₂ nanoparticles with immobilized multienzymes.
    Wu M; He Q; Shao Q; Zuo Y; Wang F; Ni H
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3300-7. PubMed ID: 21812487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coenzyme regeneration in hexanol oxidation catalyzed by alcohol dehydrogenase.
    Vrsalović Presečki A; Makovšek K; Vasić-Rački Đ
    Appl Biochem Biotechnol; 2012 Jun; 167(3):595-611. PubMed ID: 22581078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.
    Nicolau E; Méndez J; Fonseca JJ; Griebenow K; Cabrera CR
    Bioelectrochemistry; 2012 Jun; 85():1-6. PubMed ID: 22154812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Enzymes Through Encapsulation in Liposomes.
    Yoshimoto M
    Methods Mol Biol; 2017; 1504():9-18. PubMed ID: 27770410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.
    Liu F; Banta S; Chen W
    Chem Commun (Camb); 2013 May; 49(36):3766-8. PubMed ID: 23535691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coimmobilized system of NAD with dehydrogenases.
    Yamazaki Y; Maeda H
    Methods Enzymol; 1987; 136():21-34. PubMed ID: 3683193
    [No Abstract]   [Full Text] [Related]  

  • 16. Indolylacetic acid and N6-(delta 2-isopentenyl) adenine affect NADH binding to yeast alcohol dehydrogenase and inhibit in vitro the enzymatic oxidation of ethanol.
    Zikmanis P; Krüce R
    Biofactors; 1990 Oct; 2(4):237-40. PubMed ID: 2282140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of polyethylene terephthalate on yeast alcohol dehydrogenase.
    Simon LM; Heinrichova K; Veszelka I; Szajáni B
    Acta Biochim Biophys Hung; 1990; 25(1-2):1-7. PubMed ID: 2151836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A paradoxical method for NAD+/NADH accumulation on an electrode surface using a hydrophobic ionic liquid.
    Masuda M; Motoyama Y; Kuwahara J; Nakamura N; Ohno H
    Biosens Bioelectron; 2013 Jan; 39(1):334-7. PubMed ID: 22902533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose.
    Bolivar JM; Wilson L; Ferrarotti SA; Guisán JM; Fernández-Lafuente R; Mateo C
    J Biotechnol; 2006 Aug; 125(1):85-94. PubMed ID: 16530871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphosphazenes as tunable and recyclable supports to immobilize alcohol dehydrogenases and lipases: synthesis, catalytic activity, and recycling efficiency.
    Cuetos A; Valenzuela ML; Lavandera I; Gotor V; Carriedo GA
    Biomacromolecules; 2010 May; 11(5):1291-7. PubMed ID: 20359182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.