These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20848178)

  • 1. Dissecting chromatin interactions in living cells from protein mobility maps.
    Erdel F; Müller-Ott K; Baum M; Wachsmuth M; Rippe K
    Chromosome Res; 2011 Jan; 19(1):99-115. PubMed ID: 20848178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the dynamics of chromatin proteins during differentiation.
    Harikumar A; Meshorer E
    Methods Mol Biol; 2013; 1042():173-80. PubMed ID: 23980007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photobleaching assays (FRAP & FLIP) to measure chromatin protein dynamics in living embryonic stem cells.
    Nissim-Rafinia M; Meshorer E
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21730953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy.
    Müller KP; Erdel F; Caudron-Herger M; Marth C; Fodor BD; Richter M; Scaranaro M; Beaudouin J; Wachsmuth M; Rippe K
    Biophys J; 2009 Dec; 97(11):2876-85. PubMed ID: 19948116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins.
    Beaudouin J; Mora-Bermúdez F; Klee T; Daigle N; Ellenberg J
    Biophys J; 2006 Mar; 90(6):1878-94. PubMed ID: 16387760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The connection between chromatin motion on the 100 nm length scale and core histone dynamics in live XTC-2 cells and isolated nuclei.
    Davis SK; Bardeen CJ
    Biophys J; 2004 Jan; 86(1 Pt 1):555-64. PubMed ID: 14695300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fluorescence imaging of protein diffusion and interaction in living cells.
    Capoulade J; Wachsmuth M; Hufnagel L; Knop M
    Nat Biotechnol; 2011 Aug; 29(9):835-9. PubMed ID: 21822256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.
    Bryan LC; Weilandt DR; Bachmann AL; Kilic S; Lechner CC; Odermatt PD; Fantner GE; Georgeon S; Hantschel O; Hatzimanikatis V; Fierz B
    Nucleic Acids Res; 2017 Oct; 45(18):10504-10517. PubMed ID: 28985346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
    Phair RD; Gorski SA; Misteli T
    Methods Enzymol; 2004; 375():393-414. PubMed ID: 14870680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome organization in the nucleus: From dynamic measurements to a functional model.
    Vivante A; Brozgol E; Bronshtein I; Garini Y
    Methods; 2017 Jul; 123():128-137. PubMed ID: 28161540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.
    Orlova DY; Bártová E; Maltsev VP; Kozubek S; Chernyshev AV
    Biophys J; 2011 Jan; 100(2):507-16. PubMed ID: 21244847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic as well as stable protein interactions contribute to genome function and maintenance.
    Hemmerich P; Schmiedeberg L; Diekmann S
    Chromosome Res; 2011 Jan; 19(1):131-51. PubMed ID: 21046224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a model comparison approach to describe the assembly pathway for histone H1.
    Contreras C; Villasana M; Hendzel MJ; Carrero G
    PLoS One; 2018; 13(1):e0191562. PubMed ID: 29352283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching.
    Mueller F; Wach P; McNally JG
    Biophys J; 2008 Apr; 94(8):3323-39. PubMed ID: 18199661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin.
    Lerner J; Gomez-Garcia PA; McCarthy RL; Liu Z; Lakadamyali M; Zaret KS
    Mol Cell; 2020 Aug; 79(4):677-688.e6. PubMed ID: 32574554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
    Wachsmuth M; Weidemann T; Müller G; Hoffmann-Rohrer UW; Knoch TA; Waldeck W; Langowski J
    Biophys J; 2003 May; 84(5):3353-63. PubMed ID: 12719264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing protein interaction dynamics to chemically defined chromatin fibers by colocalization single-molecule fluorescence microscopy.
    Mivelaz M; Fierz B
    Methods; 2020 Dec; 184():112-124. PubMed ID: 32004546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring diffusion and binding kinetics by contact area FRAP.
    Tolentino TP; Wu J; Zarnitsyna VI; Fang Y; Dustin ML; Zhu C
    Biophys J; 2008 Jul; 95(2):920-30. PubMed ID: 18390627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis.
    Bhattacharya D; Talwar S; Mazumder A; Shivashankar GV
    Biophys J; 2009 May; 96(9):3832-9. PubMed ID: 19413989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins.
    Phair RD; Scaffidi P; Elbi C; Vecerová J; Dey A; Ozato K; Brown DT; Hager G; Bustin M; Misteli T
    Mol Cell Biol; 2004 Jul; 24(14):6393-402. PubMed ID: 15226439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.