These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20848315)

  • 21. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing.
    Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC
    Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory.
    Jin B; Seki S; Paredes E; Qiu J; Shi Y; Zhang Z; Ma C; Jiang S; Li J; Yuan F; Wang S; Shao X; Mazur P
    Cryobiology; 2016 Oct; 73(2):181-6. PubMed ID: 27481511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water-transport and intracellular ice formation of human adipose-derived stem cells during freezing.
    Li Z; Shen L; Huang Y; Xiang X; Zhao G; Luan J
    J Therm Biol; 2020 Oct; 93():102689. PubMed ID: 33077114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential.
    Toner M; Cravalho EG; Stachecki J; Fitzgerald T; Tompkins RG; Yarmush ML; Armant DR
    Biophys J; 1993 Jun; 64(6):1908-21. PubMed ID: 8369414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The temperature and type of intracellular ice formation in preimplantation mouse embryos as a function of the developmental stage.
    Seki S; Mazur P
    Biol Reprod; 2010 Jun; 82(6):1198-205. PubMed ID: 20164439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular ice formation in mouse oocytes subjected to interrupted rapid cooling.
    Mazur P; Pinn IL; Kleinhans FW
    Cryobiology; 2007 Oct; 55(2):158-66. PubMed ID: 17686470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.
    Mazur P; Seki S
    Cryobiology; 2011 Feb; 62(1):1-7. PubMed ID: 21055397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice.
    Seki S; Mazur P
    Biol Reprod; 2008 Oct; 79(4):727-37. PubMed ID: 18562703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages.
    Ruffing NA; Steponkus PL; Pitt RE; Parks JE
    Cryobiology; 1993 Dec; 30(6):562-80. PubMed ID: 8306705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survival of Pacific oyster, Crassostrea gigas, oocytes in relation to intracellular ice formation.
    Salinas-Flores L; Adams SL; Wharton DA; Downes MF; Lim MH
    Cryobiology; 2008 Feb; 56(1):28-35. PubMed ID: 18045585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of supercooling and cell volume on intracellular ice formation.
    Prickett RC; Marquez-Curtis LA; Elliott JA; McGann LE
    Cryobiology; 2015 Apr; 70(2):156-63. PubMed ID: 25707695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmembrane Water Transport and Intracellular Ice Formation of Human Umbilical Vein Endothelial Cells During Freezing.
    Huang Y; Dong Y; Gao B; Ma R; Gao FL; Shen L
    Biopreserv Biobank; 2022 Aug; 20(4):311-316. PubMed ID: 35984940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation.
    Seki S; Edashige K; Wada S; Mazur P
    Reproduction; 2011 Oct; 142(4):505-15. PubMed ID: 21734033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling.
    Seki S; Mazur P
    Cryobiology; 2008 Jun; 56(3):171-80. PubMed ID: 18359013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry.
    Kleinhans FW; Guenther JF; Roberts DM; Mazur P
    Cryobiology; 2006 Feb; 52(1):128-38. PubMed ID: 16336957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.