BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 20848343)

  • 1. Hereditary sideroblastic anemia: pathophysiology and gene mutations.
    Harigae H; Furuyama K
    Int J Hematol; 2010 Oct; 92(3):425-31. PubMed ID: 20848343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathophysiology and genetic mutations in congenital sideroblastic anemia.
    Fujiwara T; Harigae H
    Pediatr Int; 2013 Dec; 55(6):675-9. PubMed ID: 24003969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular pathophysiology and genetic mutations in congenital sideroblastic anemia.
    Fujiwara T; Harigae H
    Free Radic Biol Med; 2019 Mar; 133():179-185. PubMed ID: 30098397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment.
    Camaschella C
    Semin Hematol; 2009 Oct; 46(4):371-7. PubMed ID: 19786205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular pathophysiology of sideroblastic anemia].
    Fujiwara T
    Rinsho Ketsueki; 2018; 59(10):1979-1987. PubMed ID: 30305500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biology of sideroblastic anemia].
    Harigae H
    Rinsho Ketsueki; 2017; 58(4):347-352. PubMed ID: 28484165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Recent progress in iron metabolism and iron-related anemia].
    Harigae H
    Rinsho Byori; 2010 Dec; 58(12):1211-8. PubMed ID: 21348241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetics of inherited sideroblastic anemias.
    Fleming MD
    Semin Hematol; 2002 Oct; 39(4):270-81. PubMed ID: 12382202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial iron metabolism and sideroblastic anemia.
    Sheftel AD; Richardson DR; Prchal J; Ponka P
    Acta Haematol; 2009; 122(2-3):120-33. PubMed ID: 19907149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis.
    Ono K; Fujiwara T; Saito K; Nishizawa H; Takahashi N; Suzuki C; Ochi T; Kato H; Ishii Y; Onodera K; Ichikawa S; Fukuhara N; Onishi Y; Yokoyama H; Yamada R; Nakamura Y; Igarashi K; Harigae H
    Sci Rep; 2022 May; 12(1):9024. PubMed ID: 35637209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Late-onset X-linked sideroblastic anemia. Missense mutations in the erythroid delta-aminolevulinate synthase (ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts.
    Cotter PD; May A; Fitzsimons EJ; Houston T; Woodcock BE; al-Sabah AI; Wong L; Bishop DF
    J Clin Invest; 1995 Oct; 96(4):2090-6. PubMed ID: 7560104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the understanding of inherited sideroblastic anaemia.
    Camaschella C
    Br J Haematol; 2008 Oct; 143(1):27-38. PubMed ID: 18637800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations.
    Bergmann AK; Campagna DR; McLoughlin EM; Agarwal S; Fleming MD; Bottomley SS; Neufeld EJ
    Pediatr Blood Cancer; 2010 Feb; 54(2):273-8. PubMed ID: 19731322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia.
    Cazzola M; Invernizzi R; Bergamaschi G; Levi S; Corsi B; Travaglino E; Rolandi V; Biasiotto G; Drysdale J; Arosio P
    Blood; 2003 Mar; 101(5):1996-2000. PubMed ID: 12406866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New mutation in erythroid-specific delta-aminolevulinate synthase as the cause of X-linked sideroblastic anemia responsive to pyridoxine.
    Kucerova J; Horvathova M; Mojzikova R; Belohlavkova P; Cermak J; Divoky V
    Acta Haematol; 2011; 125(4):193-7. PubMed ID: 21252495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and Molecular Characterization of Human Ring Sideroblasts: a Key Role of Ferrous Iron in Terminal Erythroid Differentiation and Ring Sideroblast Formation.
    Saito K; Fujiwara T; Hatta S; Morita M; Ono K; Suzuki C; Fukuhara N; Onishi Y; Nakamura Y; Kawamata S; Shimizu R; Yamamoto M; Harigae H
    Mol Cell Biol; 2019 Apr; 39(7):. PubMed ID: 30670569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing.
    Cazzola M; Malcovati L
    Hematology Am Soc Hematol Educ Program; 2015; 2015():19-25. PubMed ID: 26637696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.
    Fujiwara T; Okamoto K; Niikuni R; Takahashi K; Okitsu Y; Fukuhara N; Onishi Y; Ishizawa K; Ichinohasama R; Nakamura Y; Nakajima M; Tanaka T; Harigae H
    Biochem Biophys Res Commun; 2014 Nov; 454(1):102-8. PubMed ID: 25450364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Congenital sideroblastic anemia: Advances in gene mutations and pathophysiology.
    Long Z; Li H; Du Y; Han B
    Gene; 2018 Aug; 668():182-189. PubMed ID: 29787825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.