These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 2084840)
1. Accumulation of metals and organochlorines in tissues of the oyster Crassostrea angulata from the Sado Estuary, Portugal. Ferreira AM; Cortesão C; Castro OG; Vale C Sci Total Environ; 1990 Nov; 97-98():627-39. PubMed ID: 2084840 [TBL] [Abstract][Full Text] [Related]
2. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Luo L; Ke C; Guo X; Shi B; Huang M Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk. Ruiz-Fernández AC; Wu RSS; Lau TC; Pérez-Bernal LH; Sánchez-Cabeza JA; Chiu JMY Environ Pollut; 2018 Dec; 243(Pt A):197-205. PubMed ID: 30172989 [TBL] [Abstract][Full Text] [Related]
4. Assessment of trace elements in the shell layers and soft tissues of the pearl oyster Pinctada radiata using multivariate analyses: a potential proxy for temporal and spatial variations of trace elements. Pourang N; Richardson CA; Chenery SR; Nasrollahzedeh H Environ Monit Assess; 2014 Apr; 186(4):2465-85. PubMed ID: 24292951 [TBL] [Abstract][Full Text] [Related]
5. Biomonitoring of trace metal contamination in the Potengi estuary, Natal (Brazil), using the oyster Crassostrea rhizophorae, a local food source. Silva CA; Rainbow PS; Smith BD; Santos ZL Water Res; 2001 Dec; 35(17):4072-8. PubMed ID: 11791836 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant and detoxification responses of oysters Crassostrea hongkongensis in a multimetal-contaminated estuary. Liu X; Wang WX Environ Toxicol Chem; 2016 Nov; 35(11):2798-2805. PubMed ID: 27071024 [TBL] [Abstract][Full Text] [Related]
7. Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Barath Kumar S; Padhi RK; Satpathy KK Mar Pollut Bull; 2019 Apr; 141():273-282. PubMed ID: 30955735 [TBL] [Abstract][Full Text] [Related]
8. Principal Components and Hierarchical Cluster Analyses of Trace Metals and Total Hydrocarbons in Gills, Intestines and Muscles of Clarias gariepinus (Burchell, 1822). Isibor PO; Imoobe TOT; Enuneku AA; Akinduti PA; Dedeke GA; Adagunodo TA; Obafemi DY Sci Rep; 2020 Mar; 10(1):5180. PubMed ID: 32198448 [TBL] [Abstract][Full Text] [Related]
9. Effects of mine tailing and mixed contamination on metals, trace elements accumulation and histopathology of the chub (Squalius cephalus) tissues: Evidence from three differently contaminated sites in Serbia. Rašković B; Poleksić V; Skorić S; Jovičić K; Spasić S; Hegediš A; Vasić N; Lenhardt M Ecotoxicol Environ Saf; 2018 May; 153():238-247. PubMed ID: 29454232 [TBL] [Abstract][Full Text] [Related]
10. Variations of trace metals in two estuarine environments with contrasting pollution histories. Weng N; Wang WX Sci Total Environ; 2014 Jul; 485-486():604-614. PubMed ID: 24747252 [TBL] [Abstract][Full Text] [Related]
11. Major and trace metals in suspended and bottom sediments of the Mandovi and Zuari estuaries, western India: distribution, source, and pollution. Renjan S; Rao VP; Kessarkar PM Environ Sci Pollut Res Int; 2017 Dec; 24(35):27409-27429. PubMed ID: 28975556 [TBL] [Abstract][Full Text] [Related]
12. The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring. Robinson WA; Maher WA; Krikowa F; Nell JA; Hand R J Environ Monit; 2005 Mar; 7(3):208-23. PubMed ID: 15735780 [TBL] [Abstract][Full Text] [Related]
13. Bio-accumulation of some trace metals in the short-neck clam Paphia malabarica from Mandovi estuary, Goa. Krishna Kumari L; Kaisary S; Rodrigues V Environ Int; 2006 Feb; 32(2):229-34. PubMed ID: 16216326 [TBL] [Abstract][Full Text] [Related]
14. Green oysters occurring in an industrial harbor in Central Taiwan. Fang TH; Dai SY Mar Pollut Bull; 2017 Nov; 124(2):1006-1013. PubMed ID: 28274472 [TBL] [Abstract][Full Text] [Related]
15. Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. Lu GY; Ke CH; Zhu A; Wang WX Environ Pollut; 2017 May; 224():658-669. PubMed ID: 28262379 [TBL] [Abstract][Full Text] [Related]
16. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. Liu X; Wang WX Sci Total Environ; 2016 Feb; 544():281-90. PubMed ID: 26657374 [TBL] [Abstract][Full Text] [Related]
17. Distribution of Al, Cd, Cu, Fe, Mn, Pb and Zn in Liver, Gills and Muscle of Early Life Stages of Atlantic Salmon (Salmo salar). Lobos MG; Sáez C; Chavarría A; Sepúlveda M; Díaz P; Gaete H Bull Environ Contam Toxicol; 2019 Mar; 102(3):419-424. PubMed ID: 30635679 [TBL] [Abstract][Full Text] [Related]
18. Impact of mining on metal concentration in waters of the Zuari estuary, India. Gaonkar CV; Matta VM Environ Monit Assess; 2019 May; 191(6):368. PubMed ID: 31093781 [TBL] [Abstract][Full Text] [Related]
19. Trace element occurrence in the Pacific oyster Crassostrea gigas from coastal marine ecosystems in Italy. Burioli EAV; Squadrone S; Stella C; Foglini C; Abete MC; Prearo M Chemosphere; 2017 Nov; 187():248-260. PubMed ID: 28850909 [TBL] [Abstract][Full Text] [Related]
20. Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Djikanović V; Skorić S; Spasić S; Naunovic Z; Lenhardt M Environ Pollut; 2018 Oct; 241():1167-1174. PubMed ID: 30029326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]