These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 20848588)

  • 41. Small Molecules as SIRT Modulators.
    Bai X; Yao L; Ma X; Xu X
    Mini Rev Med Chem; 2018; 18(13):1151-1157. PubMed ID: 27334466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic benefits from Sirt1 and Sirt1 activators.
    Chaudhary N; Pfluger PT
    Curr Opin Clin Nutr Metab Care; 2009 Jul; 12(4):431-7. PubMed ID: 19474719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.
    Kumar S; Lombard DB
    Crit Rev Biochem Mol Biol; 2018 Jun; 53(3):311-334. PubMed ID: 29637793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silencing metabolic disorders by novel SIRT1 activators.
    Sakamoto K
    Cell Metab; 2008 Jan; 7(1):3-4. PubMed ID: 18177718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sirtuin modulators: past, present, and future perspectives.
    Fiorentino F; Mautone N; Menna M; D'Acunzo F; Mai A; Rotili D
    Future Med Chem; 2022 Jun; 14(12):915-939. PubMed ID: 35583203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide.
    Smith BC; Denu JM
    Biochemistry; 2007 Dec; 46(50):14478-86. PubMed ID: 18027980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroprotective properties of resveratrol in different neurodegenerative disorders.
    Albani D; Polito L; Signorini A; Forloni G
    Biofactors; 2010; 36(5):370-6. PubMed ID: 20848560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins).
    Huber K; Schemies J; Uciechowska U; Wagner JM; Rumpf T; Lewrick F; Süss R; Sippl W; Jung M; Bracher F
    J Med Chem; 2010 Feb; 53(3):1383-6. PubMed ID: 20030343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).
    Trapp J; Meier R; Hongwiset D; Kassack MU; Sippl W; Jung M
    ChemMedChem; 2007 Oct; 2(10):1419-31. PubMed ID: 17628866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The sirtuin family in cancer.
    Costa-Machado LF; Fernandez-Marcos PJ
    Cell Cycle; 2019 Sep; 18(18):2164-2196. PubMed ID: 31251117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sirtuins in aging and age-related disease.
    Longo VD; Kennedy BK
    Cell; 2006 Jul; 126(2):257-68. PubMed ID: 16873059
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ING1 represses transcription by direct DNA binding and through effects on p53.
    Kataoka H; Bonnefin P; Vieyra D; Feng X; Hara Y; Miura Y; Joh T; Nakabayashi H; Vaziri H; Harris CC; Riabowol K
    Cancer Res; 2003 Sep; 63(18):5785-92. PubMed ID: 14522900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Capillary electrophoresis-based sirtuin assay using non-peptide substrates.
    Fan Y; Hense M; Ludewig R; Weisgerber C; Scriba GK
    J Pharm Biomed Anal; 2011 Mar; 54(4):772-8. PubMed ID: 21074959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular and molecular effects of sirtuins in health and disease.
    Horio Y; Hayashi T; Kuno A; Kunimoto R
    Clin Sci (Lond); 2011 Sep; 121(5):191-203. PubMed ID: 21599635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The biochemistry of sirtuins.
    Sauve AA; Wolberger C; Schramm VL; Boeke JD
    Annu Rev Biochem; 2006; 75():435-65. PubMed ID: 16756498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases.
    Gomes P; Leal H; Mendes AF; Reis F; Cavadas C
    Trends Pharmacol Sci; 2019 Dec; 40(12):1021-1039. PubMed ID: 31704173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting Sirtuins: Substrate Specificity and Inhibitor Design.
    Rajabi N; Galleano I; Madsen AS; Olsen CA
    Prog Mol Biol Transl Sci; 2018; 154():25-69. PubMed ID: 29413177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potent and Specific Activators for Mitochondrial Sirtuins Sirt3 and Sirt5.
    Suenkel B; Valente S; Zwergel C; Weiss S; Di Bello E; Fioravanti R; Aventaggiato M; Amorim JA; Garg N; Kumar S; Lombard DB; Hu T; Singh PK; Tafani M; Palmeira CM; Sinclair D; Mai A; Steegborn C
    J Med Chem; 2022 Oct; 65(20):14015-14031. PubMed ID: 36228194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins).
    Lawson M; Uciechowska U; Schemies J; Rumpf T; Jung M; Sippl W
    Biochim Biophys Acta; 2010; 1799(10-12):726-39. PubMed ID: 20601279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.