BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20848656)

  • 21. Hemocompatible curcumin-dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells.
    Raveendran R; Bhuvaneshwar GS; Sharma CP
    Carbohydr Polym; 2016 Feb; 137():497-507. PubMed ID: 26686156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imprinted-like biopolymeric micelles as efficient nanovehicles for curcumin delivery.
    Zhang L; Qi Z; Huang Q; Zeng K; Sun X; Li J; Liu YN
    Colloids Surf B Biointerfaces; 2014 Nov; 123():15-22. PubMed ID: 25222139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linolenic acid-modified PEG-PCL micelles for curcumin delivery.
    Song Z; Zhu W; Liu N; Yang F; Feng R
    Int J Pharm; 2014 Aug; 471(1-2):312-21. PubMed ID: 24939613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.
    Basniwal RK; Khosla R; Jain N
    Nutr Cancer; 2014; 66(6):1015-22. PubMed ID: 25068616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells.
    Manju S; Sreenivasan K
    Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.
    Gou M; Men K; Shi H; Xiang M; Zhang J; Song J; Long J; Wan Y; Luo F; Zhao X; Qian Z
    Nanoscale; 2011 Apr; 3(4):1558-67. PubMed ID: 21283869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and performance evaluation of self-assembled pH-responsive curcumin-bacterial exopolysaccharide micellar conjugates as bioactive delivery system.
    Gupta C; Hazra C; Poddar P; Dhara D; Byram PK; Chakravorty N; Sen R; Ghosh SK
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130372. PubMed ID: 38395275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity.
    Lee H; Lee K; Park TG
    Bioconjug Chem; 2008 Jun; 19(6):1319-25. PubMed ID: 18481885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin.
    Ma Z; Haddadi A; Molavi O; Lavasanifar A; Lai R; Samuel J
    J Biomed Mater Res A; 2008 Aug; 86(2):300-10. PubMed ID: 17957721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates.
    Gaikwad D; Shewale R; Patil V; Mali D; Gaikwad U; Jadhav N
    Int J Biol Macromol; 2017 Nov; 104(Pt A):656-664. PubMed ID: 28602990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.
    Fatima MT; Chanchal A; Yavvari PS; Bhagat SD; Gujrati M; Mishra RK; Srivastava A
    Biomacromolecules; 2016 Jul; 17(7):2375-83. PubMed ID: 27192144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene-based anticancer nanosystem and its biosafety evaluation using a zebrafish model.
    Liu CW; Xiong F; Jia HZ; Wang XL; Cheng H; Sun YH; Zhang XZ; Zhuo RX; Feng J
    Biomacromolecules; 2013 Feb; 14(2):358-66. PubMed ID: 23286342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line.
    Rahman MH; Ramanathan M; Sankar V
    Pak J Pharm Sci; 2014 Sep; 27(5):1281-5. PubMed ID: 25176384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery.
    Lin W; Guan X; Sun T; Huang Y; Jing X; Xie Z
    Colloids Surf B Biointerfaces; 2015 Feb; 126():217-23. PubMed ID: 25576814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.
    Banerjee S; Chakravarty AR
    Acc Chem Res; 2015 Jul; 48(7):2075-83. PubMed ID: 26158541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy.
    Mukerjee A; Vishwanatha JK
    Anticancer Res; 2009 Oct; 29(10):3867-75. PubMed ID: 19846921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ε-caprolactone) copolymer micelles for the delivery of curcumin.
    Song Z; Zhu W; Song J; Wei P; Yang F; Liu N; Feng R
    Drug Deliv; 2015 Jan; 22(1):58-68. PubMed ID: 24725028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells.
    Raveendran R; Bhuvaneshwar G; Sharma CP
    J Biomater Appl; 2013 Mar; 27(7):811-27. PubMed ID: 22274881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carboxymethylcellulose-tetrahydrocurcumin conjugates for colon-specific delivery of a novel anti-cancer agent, 4-amino tetrahydrocurcumin.
    Plyduang T; Lomlim L; Yuenyongsawad S; Wiwattanapatapee R
    Eur J Pharm Biopharm; 2014 Oct; 88(2):351-60. PubMed ID: 24859389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability.
    Shelma R; Sharma CP
    Carbohydr Polym; 2013 Jun; 95(1):441-8. PubMed ID: 23618291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.