BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20849394)

  • 1. Comparative evaluations of cellulosic raw materials for second generation bioethanol production.
    Jeon YJ; Xun Z; Rogers PL
    Lett Appl Microbiol; 2010 Nov; 51(5):518-24. PubMed ID: 20849394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process.
    dos Santos Dda S; Camelo AC; Rodrigues KC; Carlos LC; Pereira N
    Appl Biochem Biotechnol; 2010 May; 161(1-8):93-105. PubMed ID: 19876607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulosic ethanol production: Progress, challenges and strategies for solutions.
    Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW
    Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production.
    Xia J; Yang Y; Liu CG; Yang S; Bai FW
    Trends Biotechnol; 2019 Sep; 37(9):960-972. PubMed ID: 30876702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis.
    Yanase H; Nozaki K; Okamoto K
    Biotechnol Lett; 2005 Feb; 27(4):259-63. PubMed ID: 15742147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.
    Lau MJ; Lau MW; Gunawan C; Dale BE
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1847-57. PubMed ID: 20419480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-solid enzymatic hydrolysis and fermentation of solka floc into ethanol.
    Um BH; Hanley TR
    J Microbiol Biotechnol; 2008 Jul; 18(7):1257-65. PubMed ID: 18667854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae.
    Vasan PT; Piriya PS; Prabhu DI; Vennison SJ
    Bioresour Technol; 2011 Feb; 102(3):2585-9. PubMed ID: 20971639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of ethanol production from sodium hydroxide pretreated rice straw residue using Saccharomyces cerevisiae and Zymomonas mobilis.
    Kumar N; Yadav A; Singh G; Singh A; Kumar P; Aggarwal NK
    Arch Microbiol; 2023 Mar; 205(4):146. PubMed ID: 36971832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of ethanol from carbohydrates from loblolly pine: a technical and economic assessment.
    Frederick WJ; Lien SJ; Courchene CE; DeMartini NA; Ragauskas AJ; Iisa K
    Bioresour Technol; 2008 Jul; 99(11):5051-7. PubMed ID: 18206369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation from biomass resources: current state and prospects.
    Lin Y; Tanaka S
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):627-42. PubMed ID: 16331454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zymomonas mobilis--science and industrial application.
    Doelle HW; Kirk L; Crittenden R; Toh H; Doelle MB
    Crit Rev Biotechnol; 1993; 13(1):57-98. PubMed ID: 8477453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steam pretreatment of H(2)SO(4)-impregnated Salix for the production of bioethanol.
    Sassner P; Mårtensson CG; Galbe M; Zacchi G
    Bioresour Technol; 2008 Jan; 99(1):137-45. PubMed ID: 17223555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119.
    Gao X; Gao Q; Bao J
    J Biotechnol; 2018 Sep; 282():32-37. PubMed ID: 29807049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.