These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20849604)

  • 21. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-joint movement of the cat hindlimb evoked by microstimulation of the lumbosacral spinal cord.
    Tai C; Booth AM; Robinson CJ; de Groat WC; Roppolo JR
    Exp Neurol; 2003 Oct; 183(2):620-7. PubMed ID: 14552903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural control of hand movements.
    Perez MA
    Motor Control; 2015 Apr; 19(2):135-41. PubMed ID: 25931472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wireless control of intraspinal microstimulation in a rodent model of paralysis.
    Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL
    J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of cathodal trans-spinal direct current stimulation on mouse spinal network and complex multijoint movements.
    Ahmed Z
    J Neurosci; 2013 Sep; 33(37):14949-57. PubMed ID: 24027294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.
    Gad P; Choe J; Nandra MS; Zhong H; Roy RR; Tai YC; Edgerton VR
    J Neuroeng Rehabil; 2013 Jan; 10():2. PubMed ID: 23336733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring of motor tracts with spinal cord stimulation.
    Haghighi SS; York DH; Gaines RW; Oro JJ
    Spine (Phila Pa 1976); 1994 Jul; 19(13):1518-24. PubMed ID: 7939986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents.
    Kanchiku T; Kato Y; Suzuki H; Imajo Y; Yoshida Y; Moriya A; Taguchi T; Jung R
    J Spinal Cord Med; 2012 May; 35(3):162-9. PubMed ID: 22507026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation.
    Jilge B; Minassian K; Rattay F; Pinter MM; Gerstenbrand F; Binder H; Dimitrijevic MR
    Exp Brain Res; 2004 Feb; 154(3):308-26. PubMed ID: 14586532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.
    Frost SB; Dunham CL; Barbay S; Krizsan-Agbas D; Winter MK; Guggenmos DJ; Nudo RJ
    J Neurotrauma; 2015 Nov; 32(21):1666-73. PubMed ID: 26406381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion.
    Bazley FA; Hu C; Maybhate A; Pourmorteza A; Pashai N; Thakor NV; Kerr CL; All AH
    J Neurosurg Spine; 2012 Apr; 16(4):414-23. PubMed ID: 22303873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Location of spinal cord pathways that control hindlimb movement amplitude and interlimb coordination during voluntary swimming in turtles.
    Samara RF; Currie SN
    J Neurophysiol; 2008 Apr; 99(4):1953-68. PubMed ID: 18272877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.
    Zaaimi B; Dean LR; Baker SN
    J Neurophysiol; 2018 Jan; 119(1):235-250. PubMed ID: 29046427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle recruitment through electrical stimulation of the lumbo-sacral spinal cord.
    Mushahwar VK; Horch KW
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):22-9. PubMed ID: 10779104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motor unit activity and synaptic inputs to motoneurons in the caudal part of the injured spinal cord.
    Bao S; Lei Y
    J Neurophysiol; 2024 Feb; 131(2):187-197. PubMed ID: 38117916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Task dependent gain regulation of spinal circuits projecting to the human flexor carpi radialis.
    Carroll TJ; Baldwin ER; Collins DF
    Exp Brain Res; 2005 Mar; 161(3):299-306. PubMed ID: 15551085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical and long spinal actions on lumbosacral motoneurones in the cat.
    Aoki M; McIntyre AK
    J Physiol; 1975 Oct; 251(3):569-87. PubMed ID: 1185675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.