These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 20849808)
1. Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Milkani E; Lambert CR; McGimpsey WG Anal Biochem; 2011 Jan; 408(2):212-9. PubMed ID: 20849808 [TBL] [Abstract][Full Text] [Related]
2. A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Huang X; Tu H; Zhu D; Du D; Zhang A Talanta; 2009 May; 78(3):1036-42. PubMed ID: 19269469 [TBL] [Abstract][Full Text] [Related]
3. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors. Hai A; Ben-Haim D; Korbakov N; Cohen A; Shappir J; Oren R; Spira ME; Yitzchaik S Biosens Bioelectron; 2006 Dec; 22(5):605-12. PubMed ID: 16529923 [TBL] [Abstract][Full Text] [Related]
4. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Sinha R; Ganesana M; Andreescu S; Stanciu L Anal Chim Acta; 2010 Feb; 661(2):195-9. PubMed ID: 20113735 [TBL] [Abstract][Full Text] [Related]
5. Binding investigation of human 5-lipoxygenase with its inhibitors by SPR technology correlating with molecular docking simulation. Du L; Zhang Z; Luo X; Chen K; Shen X; Jiang H J Biochem; 2006 Apr; 139(4):715-23. PubMed ID: 16672272 [TBL] [Abstract][Full Text] [Related]
6. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Wang J; Munir A; Zhou HS Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346 [TBL] [Abstract][Full Text] [Related]
7. Magnesium effect on the acetylcholinesterase inhibition mechanism: a molecular chromatographic approach. Ibrahim F; Guillaume YC; Thomassin M; André C Talanta; 2009 Aug; 79(3):804-9. PubMed ID: 19576448 [TBL] [Abstract][Full Text] [Related]
8. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Phillips KS; Han JH; Cheng Q Anal Chem; 2007 Feb; 79(3):899-907. PubMed ID: 17263314 [TBL] [Abstract][Full Text] [Related]
9. Measurement of acetylcholinesterase inhibition using bienzymes immobilized monolith micro-reactor with integrated electrochemical detection. He P; Davies J; Greenway G; Haswell SJ Anal Chim Acta; 2010 Feb; 659(1-2):9-14. PubMed ID: 20103101 [TBL] [Abstract][Full Text] [Related]
10. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. Bartolini M; Cavrini V; Andrisano V J Chromatogr A; 2007 Mar; 1144(1):102-10. PubMed ID: 17134713 [TBL] [Abstract][Full Text] [Related]
11. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels. Zamfir LG; Rotariu L; Bala C Biosens Bioelectron; 2013 Aug; 46():61-7. PubMed ID: 23500478 [TBL] [Abstract][Full Text] [Related]
12. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Wang M; Gu X; Zhang G; Zhang D; Zhu D Langmuir; 2009 Feb; 25(4):2504-7. PubMed ID: 19154124 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Luckarift HR; Balasubramanian S; Paliwal S; Johnson GR; Simonian AL Colloids Surf B Biointerfaces; 2007 Jul; 58(1):28-33. PubMed ID: 16996252 [TBL] [Abstract][Full Text] [Related]
14. Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors. Kanda V; Kitov P; Bundle DR; McDermott MT Anal Chem; 2005 Dec; 77(23):7497-504. PubMed ID: 16316154 [TBL] [Abstract][Full Text] [Related]
15. Development of a bifunctional sensor using haptenized acetylcholinesterase and application for the detection of cocaine and organophosphates. Teller C; Halámek J; Zeravík J; Stöcklein WF; Scheller FW Biosens Bioelectron; 2008 Sep; 24(1):111-7. PubMed ID: 18468882 [TBL] [Abstract][Full Text] [Related]
16. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Yamaguchi S; Mannen T; Zako T; Kamiya N; Nagamune T Biotechnol Prog; 2003; 19(4):1348-54. PubMed ID: 12892501 [TBL] [Abstract][Full Text] [Related]
17. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of crocin and curcumin affinity on mushroom tyrosinase using surface plasmon resonance. Patil S; Srinivas S; Jadhav J Int J Biol Macromol; 2014 Apr; 65():163-6. PubMed ID: 24444880 [TBL] [Abstract][Full Text] [Related]
19. Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis. Bellon S; Buchmann W; Gonnet F; Jarroux N; Anger-Leroy M; Guillonneau F; Daniel R Anal Chem; 2009 Sep; 81(18):7695-702. PubMed ID: 19678664 [TBL] [Abstract][Full Text] [Related]
20. Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement. Lee SK; Kim HC; Cho SJ; Jeong SW; Jeon WB Ultramicroscopy; 2008 Sep; 108(10):1374-8. PubMed ID: 18562112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]