BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20849808)

  • 1. Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor.
    Milkani E; Lambert CR; McGimpsey WG
    Anal Biochem; 2011 Jan; 408(2):212-9. PubMed ID: 20849808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance.
    Huang X; Tu H; Zhu D; Du D; Zhang A
    Talanta; 2009 May; 78(3):1036-42. PubMed ID: 19269469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors.
    Hai A; Ben-Haim D; Korbakov N; Cohen A; Shappir J; Oren R; Spira ME; Yitzchaik S
    Biosens Bioelectron; 2006 Dec; 22(5):605-12. PubMed ID: 16529923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides.
    Sinha R; Ganesana M; Andreescu S; Stanciu L
    Anal Chim Acta; 2010 Feb; 661(2):195-9. PubMed ID: 20113735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding investigation of human 5-lipoxygenase with its inhibitors by SPR technology correlating with molecular docking simulation.
    Du L; Zhang Z; Luo X; Chen K; Shen X; Jiang H
    J Biochem; 2006 Apr; 139(4):715-23. PubMed ID: 16672272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J; Munir A; Zhou HS
    Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium effect on the acetylcholinesterase inhibition mechanism: a molecular chromatographic approach.
    Ibrahim F; Guillaume YC; Thomassin M; André C
    Talanta; 2009 Aug; 79(3):804-9. PubMed ID: 19576448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples.
    Phillips KS; Han JH; Cheng Q
    Anal Chem; 2007 Feb; 79(3):899-907. PubMed ID: 17263314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of acetylcholinesterase inhibition using bienzymes immobilized monolith micro-reactor with integrated electrochemical detection.
    He P; Davies J; Greenway G; Haswell SJ
    Anal Chim Acta; 2010 Feb; 659(1-2):9-14. PubMed ID: 20103101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor.
    Bartolini M; Cavrini V; Andrisano V
    J Chromatogr A; 2007 Mar; 1144(1):102-10. PubMed ID: 17134713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels.
    Zamfir LG; Rotariu L; Bala C
    Biosens Bioelectron; 2013 Aug; 46():61-7. PubMed ID: 23500478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles.
    Wang M; Gu X; Zhang G; Zhang D; Zhu D
    Langmuir; 2009 Feb; 25(4):2504-7. PubMed ID: 19154124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface.
    Luckarift HR; Balasubramanian S; Paliwal S; Johnson GR; Simonian AL
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):28-33. PubMed ID: 16996252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance imaging measurements of the inhibition of Shiga-like toxin by synthetic multivalent inhibitors.
    Kanda V; Kitov P; Bundle DR; McDermott MT
    Anal Chem; 2005 Dec; 77(23):7497-504. PubMed ID: 16316154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a bifunctional sensor using haptenized acetylcholinesterase and application for the detection of cocaine and organophosphates.
    Teller C; Halámek J; Zeravík J; Stöcklein WF; Scheller FW
    Biosens Bioelectron; 2008 Sep; 24(1):111-7. PubMed ID: 18468882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins.
    Yamaguchi S; Mannen T; Zako T; Kamiya N; Nagamune T
    Biotechnol Prog; 2003; 19(4):1348-54. PubMed ID: 12892501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.
    Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q
    Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of crocin and curcumin affinity on mushroom tyrosinase using surface plasmon resonance.
    Patil S; Srinivas S; Jadhav J
    Int J Biol Macromol; 2014 Apr; 65():163-6. PubMed ID: 24444880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis.
    Bellon S; Buchmann W; Gonnet F; Jarroux N; Anger-Leroy M; Guillonneau F; Daniel R
    Anal Chem; 2009 Sep; 81(18):7695-702. PubMed ID: 19678664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement.
    Lee SK; Kim HC; Cho SJ; Jeong SW; Jeon WB
    Ultramicroscopy; 2008 Sep; 108(10):1374-8. PubMed ID: 18562112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.