BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20849811)

  • 1. Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa.
    Benamara H; Rihouey C; Jouenne T; Alexandre S
    Biochim Biophys Acta; 2011 Jan; 1808(1):98-105. PubMed ID: 20849811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling
    Yu Y; Klauda JB
    J Chem Phys; 2018 Dec; 149(21):215102. PubMed ID: 30525713
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool.
    Benamara H; Rihouey C; Abbes I; Ben Mlouka MA; Hardouin J; Jouenne T; Alexandre S
    PLoS One; 2014; 9(9):e108478. PubMed ID: 25265483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.
    Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP
    Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.
    Park AJ; Murphy K; Surette MD; Bandoro C; Krieger JR; Taylor P; Khursigara CM
    J Proteome Res; 2015 Nov; 14(11):4524-37. PubMed ID: 26378716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells.
    Nigaud Y; Cosette P; Collet A; Song PC; Vaudry D; Vaudry H; Junter GA; Jouenne T
    Biochim Biophys Acta; 2010 Apr; 1804(4):957-66. PubMed ID: 20080211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa.
    Mozaheb N; Van Der Smissen P; Opsomer T; Mignolet E; Terrasi R; Paquot A; Larondelle Y; Dehaen W; Muccioli GG; Mingeot-Leclercq MP
    mSphere; 2022 Jun; 7(3):e0018722. PubMed ID: 35603537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.
    Toyofuku M; Roschitzki B; Riedel K; Eberl L
    J Proteome Res; 2012 Oct; 11(10):4906-15. PubMed ID: 22909304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence.
    Baker LY; Hobby CR; Siv AW; Bible WC; Glennon MS; Anderson DM; Symes SJ; Giles DK
    BMC Microbiol; 2018 Sep; 18(1):117. PubMed ID: 30217149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide.
    Quilès F; Saadi S; Francius G; Bacharouche J; Humbert F
    Biochim Biophys Acta; 2016 Jan; 1858(1):75-84. PubMed ID: 26525662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.
    Couto N; Schooling SR; Dutcher JR; Barber J
    J Proteome Res; 2015 Oct; 14(10):4207-22. PubMed ID: 26303878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy.
    Masyuko RN; Lanni EJ; Driscoll CM; Shrout JD; Sweedler JV; Bohn PW
    Analyst; 2014 Nov; 139(22):5700-8. PubMed ID: 24883432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa.
    Rollet C; Gal L; Guzzo J
    FEMS Microbiol Lett; 2009 Jan; 290(2):135-42. PubMed ID: 19054076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8.
    Favre L; Ortalo-Magné A; Pichereaux C; Gargaros A; Burlet-Schiltz O; Cotelle V; Culioli G
    Biofouling; 2018 Feb; 34(2):132-148. PubMed ID: 29319346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry.
    Zemski Berry KA; Murphy RC
    Antioxid Redox Signal; 2005; 7(1-2):157-69. PubMed ID: 15650405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa.
    Gjersing EL; Herberg JL; Horn J; Schaldach CM; Maxwell RS
    Anal Chem; 2007 Nov; 79(21):8037-45. PubMed ID: 17915964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells.
    Dubois-Brissonnet F
    Methods Mol Biol; 2019; 1918():165-170. PubMed ID: 30580407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive production of c-di-GMP is associated with mutations in a variant of Pseudomonas aeruginosa with altered membrane composition.
    Blanka A; Düvel J; Dötsch A; Klinkert B; Abraham WR; Kaever V; Ritter C; Narberhaus F; Häussler S
    Sci Signal; 2015 Apr; 8(372):ra36. PubMed ID: 25872871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
    Herzberg M; Elimelech M
    ISME J; 2008 Feb; 2(2):180-94. PubMed ID: 18049459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.