These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 20849986)
1. Through-thickness control of polymer bioresorption via electron beam irradiation. Cairns ML; Sykes A; Dickson GR; Orr JF; Farrar D; Dumba A; Buchanan FJ Acta Biomater; 2011 Feb; 7(2):548-57. PubMed ID: 20849986 [TBL] [Abstract][Full Text] [Related]
2. The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA. Cairns ML; Dickson GR; Orr JF; Farrar D; Hardacre C; Sa J; Lemoine P; Mughal MZ; Buchanan FJ J Biomed Mater Res A; 2012 Sep; 100(9):2223-9. PubMed ID: 22829468 [TBL] [Abstract][Full Text] [Related]
3. Controlled degradation of multilayered poly(lactide-co-glycolide) films using electron beam irradiation. Chia NK; Venkatraman SS; Boey FY; Cadart S; Loo JS J Biomed Mater Res A; 2008 Mar; 84(4):980-7. PubMed ID: 17647238 [TBL] [Abstract][Full Text] [Related]
4. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Loo JS; Ooi CP; Boey FY Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823 [TBL] [Abstract][Full Text] [Related]
5. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Zhang X; Kotaki M; Okubayashi S; Sukigara S Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907 [TBL] [Abstract][Full Text] [Related]
6. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation. Bittner B; Mäder K; Kroll C; Borchert HH; Kissel T J Control Release; 1999 May; 59(1):23-32. PubMed ID: 10210719 [TBL] [Abstract][Full Text] [Related]
7. Degradation behaviour of microspheres prepared by spray-drying poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) polymers. Blanco MD; Sastre RL; Teijón C; Olmo R; Teijón JM Int J Pharm; 2006 Dec; 326(1-2):139-47. PubMed ID: 16971074 [TBL] [Abstract][Full Text] [Related]
8. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. Kranz H; Ubrich N; Maincent P; Bodmeier R J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603 [TBL] [Abstract][Full Text] [Related]
9. Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites. Gazińska M; Krokos A; Kobielarz M; Włodarczyk M; Skibińska P; Stępak B; Antończak A; Morawiak M; Płociński P; Rudnicka K Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32933206 [TBL] [Abstract][Full Text] [Related]
10. Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres. Montanari L; Costantini M; Signoretti EC; Valvo L; Santucci M; Bartolomei M; Fattibene P; Onori S; Faucitano A; Conti B; Genta I J Control Release; 1998 Dec; 56(1-3):219-29. PubMed ID: 9801445 [TBL] [Abstract][Full Text] [Related]
11. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production. Little H; Themistou E; Clarke SA; Cunningham E; Buchanan F J Mater Sci Mater Med; 2017 Dec; 29(1):14. PubMed ID: 29285611 [TBL] [Abstract][Full Text] [Related]
12. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357 [TBL] [Abstract][Full Text] [Related]
13. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour. Unger F; Wittmar M; Morell F; Kissel T Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641 [TBL] [Abstract][Full Text] [Related]
14. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation. Leach KJ; Mathiowitz E Biomaterials; 1998 Nov; 19(21):1973-80. PubMed ID: 9863531 [TBL] [Abstract][Full Text] [Related]
15. Preparation and properties of poly(L-lactide)/hydroxyapatite composites. Kesenci K; Fambri L; Migliaresi C; Pişkin E J Biomater Sci Polym Ed; 2000; 11(6):617-32. PubMed ID: 10981677 [TBL] [Abstract][Full Text] [Related]
16. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
17. Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly(lactide-co-glycolide) (PLGA). Loo SC; Ooi CP; Boey YC Biomaterials; 2005 Jun; 26(18):3809-17. PubMed ID: 15626429 [TBL] [Abstract][Full Text] [Related]
18. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA. Loo SC; Tan HT; Ooi CP; Boey YC Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888 [TBL] [Abstract][Full Text] [Related]
19. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
20. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers. Peng F; Shaw MT; Olson JR; Wei M J Biomater Appl; 2013 Feb; 27(6):641-9. PubMed ID: 22274879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]