BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 20850115)

  • 1. Protective effect of deferoxamine on experimental spinal cord injury in rat.
    Liu J; Tang T; Yang H
    Injury; 2011 Aug; 42(8):742-5. PubMed ID: 20850115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidation of melatonin against spinal cord injury in rats.
    Liu JB; Tang TS; Yang HL; Xiao DS
    Chin Med J (Engl); 2004 Apr; 117(4):571-5. PubMed ID: 15109452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidation of quercetin against spinal cord injury in rats.
    Liu JB; Tang TS; Yang HL
    Chin J Traumatol; 2006 Oct; 9(5):303-7. PubMed ID: 17026864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of deferoxamine and methylprednisolone: protective effect of pharmacological agents on lipid peroxidation in spinal cord injury in rats.
    Dinc C; Iplikcioglu AC; Atabey C; Eroglu A; Topuz K; Ipcioglu O; Demirel D
    Spine (Phila Pa 1976); 2013 Dec; 38(26):E1649-55. PubMed ID: 24108296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat.
    Sonmez E; Kabatas S; Ozen O; Karabay G; Turkoglu S; Ogus E; Yilmaz C; Caner H; Altinors N
    Spine (Phila Pa 1976); 2013 Jul; 38(15):1253-9. PubMed ID: 23370685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of free iron contents and its correlation with lipid peroxidation after experimental spinal cord injury.
    Liu JB; Tang TS; Xiao DS
    Chin J Traumatol; 2004 Aug; 7(4):229-32. PubMed ID: 15294102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats.
    Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S
    J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-VD-OPh, a pancaspase inhibitor, reduces trauma-induced apoptosis and improves the recovery of hind-limb function in rats after spinal cord injury.
    Colak A; Antar V; Karaoğlan A; Akdemir O; Sahan E; Celik O; Sağmanligil A
    Neurocirugia (Astur); 2009 Dec; 20(6):533-40; discussion 540. PubMed ID: 19967318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of calcitriol on experimental spinal cord injury in rats.
    Zhou KL; Chen DH; Jin HM; Wu K; Wang XY; Xu HZ; Zhang XL
    Spinal Cord; 2016 Jul; 54(7):510-6. PubMed ID: 26729579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic administration of atorvastatin improves locomotor functions and hyperacute-acute response after experimental spinal cord injury: an ultrastructural and biochemical analysis.
    Nacar OA; Eroglu H; Cetinalp NE; Menekse G; Yildirim AE; Uckun OM; Daglioglu E; Turkoglu OF; Belen AD
    Turk Neurosurg; 2014; 24(3):337-43. PubMed ID: 24848171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury.
    Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S
    Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF.
    Han X; Yang N; Xu Y; Zhu J; Chen Z; Liu Z; Dang G; Song C
    Neurosci Lett; 2011 Jan; 487(3):255-9. PubMed ID: 20851742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats.
    Colak A; Kaya M; Karaoğlan A; Sağmanligil A; Akdemir O; Sahan E; Celik O
    Neurocirugia (Astur); 2009 Jun; 20(3):245-54. PubMed ID: 19575128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mexiletine treatment-induced inhibition of caspase-3 activation and improvement of behavioral recovery after spinal cord injury.
    Kaptanoglu E; Caner H; Solaroglu I; Kilinc K
    J Neurosurg Spine; 2005 Jul; 3(1):53-6. PubMed ID: 16122023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury.
    Sharma HS
    Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does pinealectomy affect the recovery rate after spinal cord injury?
    Ates O; Cayli S; Gurses I; Yucel N; Altinoz E; Iraz M; Kocak A; Yologlu S
    Neurol Res; 2007 Sep; 29(6):533-9. PubMed ID: 17535569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deferoxamine Ameliorates Compressed Spinal Cord Injury by Promoting Neovascularization in Rats.
    Tang G; Chen Y; Chen J; Chen Z; Jiang W
    J Mol Neurosci; 2020 Sep; 70(9):1437-1444. PubMed ID: 32383023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway.
    Song Y; Liu J; Zhang F; Zhang J; Shi T; Zeng Z
    Life Sci; 2013 Jul; 92(24-26):1215-21. PubMed ID: 23688865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.