These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20850120)

  • 41. Proteomic analysis with integrated multiple dimensional liquid chromatography/mass spectrometry based on elution of ion exchange column using pH steps.
    Dai J; Shieh CH; Sheng QH; Zhou H; Zeng R
    Anal Chem; 2005 Sep; 77(18):5793-9. PubMed ID: 16159108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV.
    Fan J; Luo J; Song W; Chen X; Wan Y
    J Chromatogr A; 2015 Dec; 1423():63-70. PubMed ID: 26518493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sample displacement batch chromatography of proteins.
    Kotasinska M; Richter V; Kwiatkowski M; Schlüter H
    Methods Mol Biol; 2014; 1129():325-38. PubMed ID: 24648085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled shear affinity filtration (CSAF): a new technology for integration of cell separation and protein isolation from mammalian cell cultures.
    Vogel JH; Anspach B; Kroner KH; Piret JM; Haynes CA
    Biotechnol Bioeng; 2002 Jun; 78(7):806-14. PubMed ID: 12001173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated buffer preparation using quaternary valve in fast performance liquid chromatography for protein purification from a cell membrane.
    Lee JY; Dang K; Liu A; Alba BM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jan; 1136():121849. PubMed ID: 31841981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An integrated process for separation of major and minor proteins from goat serum.
    Jain S; Gupta MN
    Appl Biochem Biotechnol; 2005 Apr; 125(1):53-62. PubMed ID: 15834162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Applying high-throughput methods to develop a purification process for a highly glycosylated protein.
    Sanaie N; Cecchini D; Pieracci J
    Biotechnol J; 2012 Oct; 7(10):1242-55. PubMed ID: 22899660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fully automated three-step protein purification procedure for up to five samples using the NGC chromatography system.
    Becker W; Scherer A; Faust C; Bauer DK; Scholtes S; Rao E; Hofmann J; Schauder R; Langer T
    Protein Expr Purif; 2019 Jan; 153():1-6. PubMed ID: 30102973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of fast protein liquid chromatography TM in the separation of plasma proteins in urine and cerebrospinal fluid.
    Cooper EH; Turner R; Johns EA; Lindblom H; Britton VJ
    Clin Chem; 1983 Sep; 29(9):1635-40. PubMed ID: 6411384
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging analytical separation techniques with high-throughput potential for pharmaceutical analysis, part II: Novel chromatographic modes.
    Dejaegher B; Pieters S; Vander Heyden Y
    Comb Chem High Throughput Screen; 2010 Jul; 13(6):530-47. PubMed ID: 20426749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Array-Based Online Two Dimensional Liquid Chromatography System Applied to Effective Depletion of High-Abundance Proteins in Human Plasma.
    Huang Z; Yan G; Gao M; Zhang X
    Anal Chem; 2016 Feb; 88(4):2440-5. PubMed ID: 26784923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated, high-throughput IgG-antibody glycoprofiling platform.
    Stöckmann H; Adamczyk B; Hayes J; Rudd PM
    Anal Chem; 2013 Sep; 85(18):8841-9. PubMed ID: 23919734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of milligram quantities of affinity tagged-proteins using automated multistep chromatographic purification.
    Bhikhabhai R; Sjöberg A; Hedkvist L; Galin M; Liljedahl P; Frigård T; Pettersson N; Nilsson M; Sigrell-Simon JA; Markeland-Johansson C
    J Chromatogr A; 2005 Jul; 1080(1):83-92. PubMed ID: 16013618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding operational system differences for transfer of miniaturized chromatography column data using simulations.
    Keller WR; Evans ST; Ferreira G; Robbins D; Cramer SM
    J Chromatogr A; 2017 Sep; 1515():154-163. PubMed ID: 28811099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance affinity chromatography system for the rapid, efficient assay of glycated albumin.
    Yasukawa K; Abe F; Shida N; Koizumi Y; Uchida T; Noguchi K; Shima K
    J Chromatogr; 1992 Apr; 597(1-2):271-5. PubMed ID: 1517327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A computational method for planning complex compound distributions under container, liquid handler, and assay constraints.
    Russo MF; Wild D; Hoffman S; Paulson J; Neil W; Nirschl DS
    J Lab Autom; 2013 Oct; 18(5):391-403. PubMed ID: 23603752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Twin column chromatography for industrial-scale decontamination processes.
    Wenzel U; Ullrich W
    J Chromatogr A; 2004 Jan; 1023(2):207-13. PubMed ID: 14753686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designing an Autonomous Integrated Downstream Sequence From a Batch Separation Process - An Industrial Case Study.
    Löfgren A; Andersson N; Sellberg A; Nilsson B; Löfgren M; Wood S
    Biotechnol J; 2018 Apr; 13(4):e1700691. PubMed ID: 29247601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatography in plasma fractionation: benefits and future trends.
    Burnouf T
    J Chromatogr B Biomed Appl; 1995 Feb; 664(1):3-15. PubMed ID: 7757237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel experimental approach to investigate radiolysis processes in liquid samples using collimated radiation sources.
    Polin C; Wardlow N; McQuaid H; Orr P; Villagomez-Bernabe B; Figueira C; Alexander G; Srigengan S; Brun E; Gilles M; Sicard-Roselli C; Currell FJ
    Rev Sci Instrum; 2015 Mar; 86(3):035106. PubMed ID: 25832274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.