These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 20850168)

  • 1. Accumulation of Ag(0) Single Atoms at Water/Mineral Interfaces during Sunlight-Induced Reduction of Ionic Ag by Phenolic DOM.
    Li H; Qiao D; Chu M; Guo L; Sun Z; Fan Y; Ni SQ; Tung CH; Wang Y
    Environ Sci Technol; 2023 Dec; 57(49):20822-20829. PubMed ID: 38014909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further study on particle size, stability, and complexation of silver nanoparticles under the composite effect of bovine serum protein and humic acid.
    Qiao YJ; Kang J; Song CQ; Zhou N; Zhang P; Song GF
    RSC Adv; 2024 Jan; 14(4):2621-2632. PubMed ID: 38234870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.
    Yi J; Cheng J
    Ecotoxicology; 2017 Jul; 26(5):639-647. PubMed ID: 28378128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials.
    Juganson K; Ivask A; Blinova I; Mortimer M; Kahru A
    Beilstein J Nanotechnol; 2015; 6():1788-804. PubMed ID: 26425431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City).
    Tang J; Tang L; Zhang C; Zeng G; Deng Y; Dong H; Wang J; Wu Y
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):16210-4. PubMed ID: 26308926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification.
    Dankovich TA
    Environ Sci Nano; 2014 Aug; 1(4):367-378. PubMed ID: 25400935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.
    Kumar N; Palmer GR; Shah V; Walker VK
    PLoS One; 2014; 9(6):e99953. PubMed ID: 24926877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.
    He X; Aker WG; Leszczynski J; Hwang HM
    J Food Drug Anal; 2014 Mar; 22(1):128-146. PubMed ID: 24673910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).
    Veerakumar K; Govindarajan M; Rajeswary M
    Parasitol Res; 2013 Dec; 112(12):4073-85. PubMed ID: 24005479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of engineered nanoparticles in the environment.
    Maurer-Jones MA; Gunsolus IL; Murphy CJ; Haynes CL
    Anal Chem; 2013 Mar; 85(6):3036-49. PubMed ID: 23427995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.
    Jayaseelan C; Rahuman AA; Rajakumar G; Santhoshkumar T; Kirthi AV; Marimuthu S; Bagavan A; Kamaraj C; Zahir AA; Elango G; Velayutham K; Rao KV; Karthik L; Raveendran S
    Parasitol Res; 2012 Aug; 111(2):921-33. PubMed ID: 21638210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.
    Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS
    Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity of silver nanoparticles to Lemna minor L.
    Gubbins EJ; Batty LC; Lead JR
    Environ Pollut; 2011 Jun; 159(6):1551-9. PubMed ID: 21450381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity.
    Sharma VK; Siskova KM; Zboril R; Gardea-Torresdey JL
    Adv Colloid Interface Sci; 2014 Feb; 204():15-34. PubMed ID: 24406050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage.
    Dasari TP; Hwang HM
    Sci Total Environ; 2010 Nov; 408(23):5817-23. PubMed ID: 20850168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles to a river bacterial assemblage.
    Dasari TP; Hwang HM
    J Environ Sci (China); 2013 Sep; 25(9):1925-35. PubMed ID: 24520737
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.