These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20850240)

  • 1. Influence of attention focus on neural activity in the human spinal cord during thermal sensory stimulation.
    Stroman PW; Coe BC; Munoz DP
    Magn Reson Imaging; 2011 Jan; 29(1):9-18. PubMed ID: 20850240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatotopic arrangement of thermal sensory regions in the healthy human spinal cord determined by means of spinal cord functional MRI.
    Stroman PW; Bosma RL; Tsyben A
    Magn Reson Med; 2012 Sep; 68(3):923-31. PubMed ID: 22162154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences.
    Stroman PW
    Magn Reson Imaging; 2009 Dec; 27(10):1333-46. PubMed ID: 19570637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation.
    Lawrence JM; Kornelsen J; Stroman PW
    Magn Reson Imaging; 2011 Jul; 29(6):813-8. PubMed ID: 21571475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study.
    Cahill CM; Stroman PW
    Magn Reson Imaging; 2011 Apr; 29(3):342-52. PubMed ID: 21247717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord response to stepwise and block presentation of thermal stimuli: a functional MRI study.
    Bosma RL; Stroman PW
    J Magn Reson Imaging; 2015 May; 41(5):1318-25. PubMed ID: 24807470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging.
    Stroman PW; Kornelsen J; Bergman A; Krause V; Ethans K; Malisza KL; Tomanek B
    Spinal Cord; 2004 Feb; 42(2):59-66. PubMed ID: 14765137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Correlates of Cognitive Modulation of Pain Perception in the Human Brainstem and Cervical Spinal Cord using Functional Magnetic Resonance Imaging: A Review.
    Leung RH; Stroman PW
    Crit Rev Biomed Eng; 2016; 44(1-2):33-45. PubMed ID: 27652450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Magnetic Resonance Imaging of the Human Brainstem and Cervical Spinal Cord during Cognitive Modulation of Pain.
    Leung RH; Stroman PW
    Crit Rev Biomed Eng; 2016; 44(1-2):47-71. PubMed ID: 27652451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention and sensory interactions within the occipital cortex in the early blind: an fMRI study.
    Weaver KE; Stevens AA
    J Cogn Neurosci; 2007 Feb; 19(2):315-30. PubMed ID: 17280519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping.
    Xie CH; Kong KM; Guan JT; Chen YX; He JK; Qi WL; Wang XJ; Shen ZW; Wu RH
    Eur J Radiol; 2009 Apr; 70(1):1-6. PubMed ID: 18353589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for spinal functional MRI with large volume coverage of the spinal cord.
    Stroman PW; Kornelsen J; Lawrence J
    J Magn Reson Imaging; 2005 May; 21(5):520-6. PubMed ID: 15834915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticipatory brainstem activity predicts neural processing of pain in humans.
    Fairhurst M; Wiech K; Dunckley P; Tracey I
    Pain; 2007 Mar; 128(1-2):101-10. PubMed ID: 17070996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable neural activity to self- vs. externally administered thermal hyperalgesia: a parametric fMRI study.
    Mohr C; Leyendecker S; Helmchen C
    Eur J Neurosci; 2008 Feb; 27(3):739-49. PubMed ID: 18279326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying functional MRI to the spinal cord and brainstem.
    Leitch JK; Figley CR; Stroman PW
    Magn Reson Imaging; 2010 Oct; 28(8):1225-33. PubMed ID: 20409662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional magnetic resonance imaging of the human lumbar spinal cord.
    Moffitt MA; Dale BM; Duerk JL; Grill WM
    J Magn Reson Imaging; 2005 May; 21(5):527-35. PubMed ID: 15834921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates.
    Johnson JA; Zatorre RJ
    Cereb Cortex; 2005 Oct; 15(10):1609-20. PubMed ID: 15716469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical decision theory to relate neurons to behavior in the study of covert visual attention.
    Eckstein MP; Peterson MF; Pham BT; Droll JA
    Vision Res; 2009 Jun; 49(10):1097-128. PubMed ID: 19138699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.