BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20850333)

  • 1. Utility of leaf senescence-associated gene homologs as developmental markers in common wheat.
    Kajimura T; Mizuno N; Takumi S
    Plant Physiol Biochem; 2010; 48(10-11):851-9. PubMed ID: 20850333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes.
    Lee RH; Wang CH; Huang LT; Chen SC
    J Exp Bot; 2001 May; 52(358):1117-21. PubMed ID: 11432928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and molecular changes of detached wheat leaves in responding to various treatments.
    Zhao L; Zhang H; Zhang B; Bai X; Zhou C
    J Integr Plant Biol; 2012 Aug; 54(8):567-76. PubMed ID: 22765286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death.
    Yan H; Saika H; Maekawa M; Takamure I; Tsutsumi N; Kyozuka J; Nakazono M
    Genes Genet Syst; 2007 Aug; 82(4):361-6. PubMed ID: 17895586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor.
    Sperotto RA; Ricachenevsky FK; Duarte GL; Boff T; Lopes KL; Sperb ER; Grusak MA; Fett JP
    Planta; 2009 Oct; 230(5):985-1002. PubMed ID: 19697058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Functional Analysis of Senescence-Associated Genes in Wheat.
    Wang G; Li K; Zhou C
    Methods Mol Biol; 2018; 1744():237-246. PubMed ID: 29392670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.
    Rinaldo A; Gilbert B; Boni R; Krattinger SG; Singh D; Park RF; Lagudah E; Ayliffe M
    Plant Biotechnol J; 2017 Jul; 15(7):894-905. PubMed ID: 28005310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.).
    Han R; Jian C; Lv J; Yan Y; Chi Q; Li Z; Wang Q; Zhang J; Liu X; Zhao H
    BMC Genomics; 2014 Apr; 15():289. PubMed ID: 24734873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale identification of leaf senescence-associated genes.
    Gepstein S; Sabehi G; Carp MJ; Hajouj T; Nesher MF; Yariv I; Dor C; Bassani M
    Plant J; 2003 Dec; 36(5):629-42. PubMed ID: 14617064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis.
    Wei B; Zhang W; Chao J; Zhang T; Zhao T; Noctor G; Liu Y; Han Y
    Sci Rep; 2017 Jun; 7(1):2615. PubMed ID: 28572670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence.
    Kim YS; Sakuraba Y; Han SH; Yoo SC; Paek NC
    Plant Cell Physiol; 2013 Oct; 54(10):1660-72. PubMed ID: 23926065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence.
    Lee RH; Lin MC; Chen SC
    Plant Mol Biol; 2004 May; 55(2):281-95. PubMed ID: 15604681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide.
    Zhu C; Ziska L; Zhu J; Zeng Q; Xie Z; Tang H; Jia X; Hasegawa T
    Physiol Plant; 2012 Jul; 145(3):395-405. PubMed ID: 22268610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of the Leaf Senescence Database and Functional Assessment of Senescence-Associated Genes.
    Li Z; Zhao Y; Liu X; Jiang Z; Peng J; Jin J; Guo H; Luo J
    Methods Mol Biol; 2017; 1533():315-333. PubMed ID: 27987180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice.
    Liu J; Shen J; Xu Y; Li X; Xiao J; Xiong L
    J Exp Bot; 2016 Oct; 67(19):5785-5798. PubMed ID: 27638689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Comparative Analysis of Premature Senescence Leaf Mutants in Rice (Oryza sativa L.).
    He Y; Li L; Zhang Z; Wu JL
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.
    Li Z; Su D; Lei B; Wang F; Geng W; Pan G; Cheng F
    J Plant Physiol; 2015 Mar; 176():1-15. PubMed ID: 25546583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A WRKY transcription factor, TaWRKY42-B, facilitates initiation of leaf senescence by promoting jasmonic acid biosynthesis.
    Zhao MM; Zhang XW; Liu YW; Li K; Tan Q; Zhou S; Wang G; Zhou CJ
    BMC Plant Biol; 2020 Sep; 20(1):444. PubMed ID: 32993508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves.
    Parlitz S; Kunze R; Mueller-Roeber B; Balazadeh S
    J Plant Physiol; 2011 Aug; 168(12):1311-9. PubMed ID: 21377757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.