BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20850450)

  • 1. How does the shape of the cardiac action potential control calcium signaling and contraction in the heart?
    Santana LF; Cheng EP; Lederer WJ
    J Mol Cell Cardiol; 2010 Dec; 49(6):901-3. PubMed ID: 20850450
    [No Abstract]   [Full Text] [Related]  

  • 2. Models of cardiac excitation-contraction coupling in ventricular myocytes.
    Williams GS; Smith GD; Sobie EA; Jafri MS
    Math Biosci; 2010 Jul; 226(1):1-15. PubMed ID: 20346962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cardiac excitation-contraction coupling mediated by Ca2+].
    Ji YH; Sun HY
    Shi Yan Sheng Wu Xue Bao; 2004 Feb; 37(1):78-83. PubMed ID: 15133904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning cardiac excitation into cell contraction: the importance of sex differences.
    Marsh JD
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H16-7. PubMed ID: 20495144
    [No Abstract]   [Full Text] [Related]  

  • 5. Cardiac optogenetics: using light to monitor cardiac physiology.
    Koopman CD; Zimmermann WH; Knöpfel T; de Boer TP
    Basic Res Cardiol; 2017 Aug; 112(5):56. PubMed ID: 28861604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remodeling of excitation-contraction coupling in the heart: inhibition of sarcoplasmic reticulum Ca(2+) leak as a novel therapeutic approach.
    Neef S; Maier LS
    Curr Heart Fail Rep; 2007 Mar; 4(1):11-7. PubMed ID: 17386180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol 1,4,5-trisphosphate receptors: "exciting" players in cardiac excitation-contraction coupling?
    Roderick HL; Knollmann BC
    Circulation; 2013 Sep; 128(12):1273-5. PubMed ID: 23983251
    [No Abstract]   [Full Text] [Related]  

  • 9. Gain and cardiac E-C coupling: revisited and revised.
    Wier WG
    Circ Res; 2007 Sep; 101(6):533-5. PubMed ID: 17872469
    [No Abstract]   [Full Text] [Related]  

  • 10. Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure.
    Mora MT; Ferrero JM; Romero L; Trenor B
    PLoS One; 2017; 12(11):e0187739. PubMed ID: 29117223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes.
    Cooper PJ; Soeller C; Cannell MB
    J Mol Cell Cardiol; 2010 Dec; 49(6):911-7. PubMed ID: 20430038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of intracellular and intercellular synchrony of calcium release in systolic heart failure.
    Goldhaber JI; Bridge JH
    Circ Heart Fail; 2009 May; 2(3):157-9. PubMed ID: 19808334
    [No Abstract]   [Full Text] [Related]  

  • 13. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction.
    Louch WE; Mørk HK; Sexton J; Strømme TA; Laake P; Sjaastad I; Sejersted OM
    J Physiol; 2006 Jul; 574(Pt 2):519-33. PubMed ID: 16709642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac excitation-contraction coupling in the absence of Na(+) - Ca2+ exchange.
    Reuter H; Henderson SA; Han T; Mottino GA; Frank JS; Ross RS; Goldhaber JI; Philipson KD
    Cell Calcium; 2003 Jul; 34(1):19-26. PubMed ID: 12767889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2007 Apr; 92(7):2311-28. PubMed ID: 17237200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium controls cardiac function--by all means!
    Sejersted OM
    J Physiol; 2011 Jun; 589(Pt 12):2919-20. PubMed ID: 21676882
    [No Abstract]   [Full Text] [Related]  

  • 19. Modeling the cellular basis of altered excitation-contraction coupling in heart failure.
    Winslow RL; Rice J; Jafri S
    Prog Biophys Mol Biol; 1998; 69(2-3):497-514. PubMed ID: 9785953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-Dependent Arrhythmogenic Foci Created by Weakly Coupled Myocytes in the Failing Heart.
    Lang D; Sato D; Jiang Y; Ginsburg KS; Ripplinger CM; Bers DM
    Circ Res; 2017 Dec; 121(12):1379-1391. PubMed ID: 28970285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.