These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20850513)

  • 21. Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants.
    Undurraga JA; Carlyon RP; Macherey O; Wouters J; van Wieringen A
    Hear Res; 2012 Aug; 290(1-2):21-36. PubMed ID: 22583921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adding simultaneous stimulating channels to reduce power consumption in cochlear implants.
    Langner F; Saoji AA; Büchner A; Nogueira W
    Hear Res; 2017 Mar; 345():96-107. PubMed ID: 28104408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ipsilateral masking between acoustic and electric stimulations.
    Lin P; Turner CW; Gantz BJ; Djalilian HR; Zeng FG
    J Acoust Soc Am; 2011 Aug; 130(2):858-65. PubMed ID: 21877801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loudness summation using focused and unfocused electrical stimulation.
    Padilla M; Landsberger DM
    J Acoust Soc Am; 2014 Feb; 135(2):EL102-8. PubMed ID: 25234912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection.
    Zhou N; Dong L
    Trends Hear; 2017 Jan; 21():2331216517690108. PubMed ID: 28150534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Categorical loudness scaling in cochlear implant recipients.
    Busby PA; Au A
    Int J Audiol; 2017 Nov; 56(11):862-869. PubMed ID: 28639840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants.
    Nogueira W; Rode T; Büchner A
    J Acoust Soc Am; 2016 Feb; 139(2):728-39. PubMed ID: 26936556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners.
    Won JH; Jones GL; Drennan WR; Jameyson EM; Rubinstein JT
    J Acoust Soc Am; 2011 Oct; 130(4):2088-97. PubMed ID: 21973363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fitting prelingually deafened adult cochlear implant users based on electrode discrimination performance.
    Debruyne JA; Francart T; Janssen AM; Douma K; Brokx JP
    Int J Audiol; 2017 Mar; 56(3):174-185. PubMed ID: 27758152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Place specificity measured in forward and interleaved masking in cochlear implants.
    Azadpour M; AlJasser A; McKay CM
    J Acoust Soc Am; 2013 Oct; 134(4):EL314-20. PubMed ID: 24116536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users.
    Zhou N
    J Acoust Soc Am; 2017 Mar; 141(3):EL243. PubMed ID: 28372106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current Focusing to Reduce Channel Interaction for Distant Electrodes in Cochlear Implant Programs.
    DeVries L; Arenberg JG
    Trends Hear; 2018; 22():2331216518813811. PubMed ID: 30488764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.
    Berenstein CK; Vanpoucke FJ; Mulder JJ; Mens LH
    Hear Res; 2010 Dec; 270(1-2):28-38. PubMed ID: 20946945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deactivating cochlear implant electrodes to improve speech perception: A computational approach.
    Sagi E; Svirsky MA
    Hear Res; 2018 Dec; 370():316-328. PubMed ID: 30396747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neural-based vocoder implementation for evaluating cochlear implant coding strategies.
    El Boghdady N; Kegel A; Lai WK; Dillier N
    Hear Res; 2016 Mar; 333():136-149. PubMed ID: 26775182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.