These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20851345)

  • 1. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP.
    Li DH; Chung YS; Gloyd M; Joseph E; Ghirlando R; Wright GD; Cheng YQ; Maurizi MR; Guarné A; Ortega J
    Chem Biol; 2010 Sep; 17(9):959-69. PubMed ID: 20851345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpP: a structurally dynamic protease regulated by AAA+ proteins.
    Alexopoulos JA; Guarné A; Ortega J
    J Struct Biol; 2012 Aug; 179(2):202-10. PubMed ID: 22595189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants stabilizing the axial channel of ClpP for substrate translocation.
    Alexopoulos J; Ahsan B; Homchaudhuri L; Husain N; Cheng YQ; Ortega J
    Mol Microbiol; 2013 Oct; 90(1):167-80. PubMed ID: 23927726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2006 Feb; 153(2):113-28. PubMed ID: 16406682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    J Struct Biol; 2004; 146(1-2):217-26. PubMed ID: 15037252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.
    Sharma S; Hoskins JR; Wickner S
    J Biol Chem; 2005 Feb; 280(7):5449-55. PubMed ID: 15591068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.
    Glynn SE; Martin A; Nager AR; Baker TA; Sauer RT
    Cell; 2009 Nov; 139(4):744-56. PubMed ID: 19914167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.
    Maglica Z; Kolygo K; Weber-Ban E
    Structure; 2009 Apr; 17(4):508-16. PubMed ID: 19368884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turned on for degradation: ATPase-independent degradation by ClpP.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2009 Feb; 165(2):118-25. PubMed ID: 19038348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism.
    Lee BG; Park EY; Lee KE; Jeon H; Sung KH; Paulsen H; Rübsamen-Schaeff H; Brötz-Oesterhelt H; Song HK
    Nat Struct Mol Biol; 2010 Apr; 17(4):471-8. PubMed ID: 20305655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP.
    Kim S; Zuromski KL; Bell TA; Sauer RT; Baker TA
    Elife; 2020 Dec; 9():. PubMed ID: 33258771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.
    Amor AJ; Schmitz KR; Sello JK; Baker TA; Sauer RT
    ACS Chem Biol; 2016 Jun; 11(6):1552-1560. PubMed ID: 27003103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase.
    Effantin G; Maurizi MR; Steven AC
    J Biol Chem; 2010 May; 285(19):14834-40. PubMed ID: 20236930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.