These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20851405)
1. Clogging of microchannels by nano-particles due to hetero-coagulation in elongational flow. Georgieva K; Dijkstra DJ; Fricke H; Willenbacher N J Colloid Interface Sci; 2010 Dec; 352(2):265-77. PubMed ID: 20851405 [TBL] [Abstract][Full Text] [Related]
2. Colloidal surface interactions and membrane fouling: investigations at pore scale. Bacchin P; Marty A; Duru P; Meireles M; Aimar P Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419 [TBL] [Abstract][Full Text] [Related]
3. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
4. Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions. Ueno K; Imaizumi S; Hata K; Watanabe M Langmuir; 2009 Jan; 25(2):825-31. PubMed ID: 19072578 [TBL] [Abstract][Full Text] [Related]
5. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M; Seki M Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946 [TBL] [Abstract][Full Text] [Related]
7. Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters. Boettcher M; Schmidt S; Latz A; Jaeger MS; Stuke M; Duschl C J Phys Condens Matter; 2011 Aug; 23(32):324101. PubMed ID: 21795763 [TBL] [Abstract][Full Text] [Related]
8. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation. Lattuada M; Olivo C; Gauer C; Storti G; Morbidelli M Langmuir; 2010 May; 26(10):7062-71. PubMed ID: 20143795 [TBL] [Abstract][Full Text] [Related]
9. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X; Cooper JM; Monaghan PB; Haswell SJ Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220 [TBL] [Abstract][Full Text] [Related]
10. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Kim JY; Ahn SW; Lee SS; Kim JM Lab Chip; 2012 Aug; 12(16):2807-14. PubMed ID: 22776909 [TBL] [Abstract][Full Text] [Related]
11. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations. Vahey MD; Voldman J Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures. Harada M; Abe D; Kimura Y J Colloid Interface Sci; 2005 Dec; 292(1):113-21. PubMed ID: 16024035 [TBL] [Abstract][Full Text] [Related]
13. Design and fabrication of colloidal polymer nanocomposites. Wang T; Keddie JL Adv Colloid Interface Sci; 2009; 147-148():319-32. PubMed ID: 18757049 [TBL] [Abstract][Full Text] [Related]