These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20851405)

  • 1. Clogging of microchannels by nano-particles due to hetero-coagulation in elongational flow.
    Georgieva K; Dijkstra DJ; Fricke H; Willenbacher N
    J Colloid Interface Sci; 2010 Dec; 352(2):265-77. PubMed ID: 20851405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions.
    Ueno K; Imaizumi S; Hata K; Watanabe M
    Langmuir; 2009 Jan; 25(2):825-31. PubMed ID: 19072578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters.
    Boettcher M; Schmidt S; Latz A; Jaeger MS; Stuke M; Duschl C
    J Phys Condens Matter; 2011 Aug; 23(32):324101. PubMed ID: 21795763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.
    Lattuada M; Olivo C; Gauer C; Storti G; Morbidelli M
    Langmuir; 2010 May; 26(10):7062-71. PubMed ID: 20143795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow.
    Kim JY; Ahn SW; Lee SS; Kim JM
    Lab Chip; 2012 Aug; 12(16):2807-14. PubMed ID: 22776909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations.
    Vahey MD; Voldman J
    Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures.
    Harada M; Abe D; Kimura Y
    J Colloid Interface Sci; 2005 Dec; 292(1):113-21. PubMed ID: 16024035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of colloidal polymer nanocomposites.
    Wang T; Keddie JL
    Adv Colloid Interface Sci; 2009; 147-148():319-32. PubMed ID: 18757049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rheology of colloidal and noncolloidal food dispersions.
    Genovese DB; Lozano JE; Rao MA
    J Food Sci; 2007 Mar; 72(2):R11-20. PubMed ID: 17995847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic effects of charged nanoparticles in microfluidic Couette flow.
    Choi CJ; Jang SP; Choi SU
    J Colloid Interface Sci; 2011 Nov; 363(1):59-63. PubMed ID: 21831393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical differential mobility analyzer for micron size colloidal particles: theoretical approach.
    Kim SB; Song DK; Kim SS
    J Colloid Interface Sci; 2007 Jul; 311(1):102-9. PubMed ID: 17383672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection.
    Claveranne-Lamolère C; Lespes G; Dubascoux S; Aupiais J; Pointurier F; Potin-Gautier M
    J Chromatogr A; 2009 Dec; 1216(52):9113-9. PubMed ID: 19766227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.