These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20851408)

  • 1. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage.
    Yang J; Zhang Z; Men X; Xu X; Zhu X
    Langmuir; 2010 Jun; 26(12):10198-202. PubMed ID: 20394384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.
    Long J; Zhong M; Zhang H; Fan P
    J Colloid Interface Sci; 2015 Mar; 441():1-9. PubMed ID: 25481645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity.
    Wang L; Peng B; Su Z
    Langmuir; 2010 Jul; 26(14):12203-8. PubMed ID: 20415506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically modified superhydrophobic WO(x) nanowire arrays and UV photopatterning.
    Kwak G; Lee M; Yong K
    Langmuir; 2010 Jun; 26(12):9964-7. PubMed ID: 20369846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass.
    Wang Z; Zhu L; Li W; Liu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4808-14. PubMed ID: 23627251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.
    Drelich J; Chibowski E
    Langmuir; 2010 Dec; 26(24):18621-3. PubMed ID: 21090661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings.
    Kim BS; Shin S; Shin SJ; Kim KM; Cho HH
    Langmuir; 2011 Aug; 27(16):10148-56. PubMed ID: 21728376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.
    Shirgholami MA; Khalil-Abad MS; Khajavi R; Yazdanshenas ME
    J Colloid Interface Sci; 2011 Jul; 359(2):530-5. PubMed ID: 21536303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.