These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20851788)

  • 1. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle.
    Couade M; Pernot M; Messas E; Bel A; Ba M; Hagege A; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Feb; 30(2):295-305. PubMed ID: 20851788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging.
    Lee WN; Pernot M; Couade M; Messas E; Bruneval P; Bel A; Hagège AA; Fink M; Tanter M
    IEEE Trans Med Imaging; 2012 Mar; 31(3):554-62. PubMed ID: 22020673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium.
    Lee WN; Larrat B; Pernot M; Tanter M
    Phys Med Biol; 2012 Aug; 57(16):5075-95. PubMed ID: 22836727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo mapping of brain elasticity in small animals using shear wave imaging.
    Macé E; Cohen I; Montaldo G; Miles R; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Mar; 30(3):550-8. PubMed ID: 20876009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging.
    Couade M; Pernot M; Prada C; Messas E; Emmerich J; Bruneval P; Criton A; Fink M; Tanter M
    Ultrasound Med Biol; 2010 Oct; 36(10):1662-76. PubMed ID: 20800942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1603-11. PubMed ID: 21859579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
    Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M
    Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear modulus estimation with vibrating needle stimulation.
    Orescanin M; Insana M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1358-67. PubMed ID: 20529711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracardiac echocardiography measurement of dynamic myocardial stiffness with shear wave velocimetry.
    Hollender PJ; Wolf PD; Goswami R; Trahey GE
    Ultrasound Med Biol; 2012 Jul; 38(7):1271-83. PubMed ID: 22579544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study.
    Muller M; Gennisson JL; Deffieux T; Tanter M; Fink M
    Ultrasound Med Biol; 2009 Feb; 35(2):219-29. PubMed ID: 19081665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac magnetic resonance elastography. Initial results.
    Elgeti T; Rump J; Hamhaber U; Papazoglou S; Hamm B; Braun J; Sack I
    Invest Radiol; 2008 Nov; 43(11):762-72. PubMed ID: 18923255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring anisotropic muscle stiffness properties using elastography.
    Green MA; Geng G; Qin E; Sinkus R; Gandevia SC; Bilston LE
    NMR Biomed; 2013 Nov; 26(11):1387-94. PubMed ID: 23640745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic tissue characterization of the mouse myocardium: successful in vivo cyclic variation measurements.
    Kovacs A; Courtois MR; Weinheimer CJ; Posdamer SH; Wallace KD; Holland MR; Miller JG
    J Am Soc Echocardiogr; 2004 Aug; 17(8):883-92. PubMed ID: 15282494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects for elasticity reconstruction in the heart.
    O'Donnell M; Skovoroda AR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):322-8. PubMed ID: 15128219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A composite high-frame-rate system for clinical cardiovascular imaging.
    Wang S; Lee WN; Provost J; Luo J; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2221-33. PubMed ID: 18986870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.